Hi Hirdesh,
You are unlikely to see good scaling across 4 1080's unless you have custom peer to peer hardware. Take a read through the following pages:
http://ambermd.org/gpus/ <
http://ambermd.org/gpus/>
http://ambermd.org/gpus/recommended_hardware.htm#hardware <
http://ambermd.org/gpus/recommended_hardware.htm#hardware>
and
http://ambermd.org/gpus/benchmarks.htm#Benchmarks <
http://ambermd.org/gpus/benchmarks.htm#Benchmarks>
If you use GPU's 0 and 1 together or 2 and 3 together you will probably see speedup if they have peer to peer connectivity. Likely your best approach will be 4 x 1 GPU runs or 2 x 2 GPU runs (or 2 x 1 + 1 x 2). Note from the benchmark page you can download the benchmark suite and run it on you system and you'll be able to see how each GPU is performing and how well 2 and 4 GPU combinations work.
All the best
Ross
> On Jan 27, 2017, at 16:06, Hirdesh Kumar <hirdesh.iitd.gmail.com> wrote:
>
> Hi,
> I am testing my recently installed amber16 which I built as pmemd.cuda.MPI
>
> the intallation was successful (no FAILURE in make test.cuda_parallel).
>
> Next I submitted a test job as:
>
>
> *export CUDA_VISIBLE_DEVICE=0,1,2,3mpirun -np 4 pmemd.cuda_SPFP.MPI -O -i
> prod1.in <http://prod1.in> -p protein.prmtop -c eq3.rst -r prod1.rst -o
> prod1.out -x prod1.nc <http://prod1.nc>*
>
>
> Using nvidia-smi, I checked that I can access all 4 GPUs in parallel,
> however, I am surprised by GPU-utility. Why each GPU is used only ~50%.
>
> I previosly had speed of 44 ns/day using a single K80 GPU. However, using
> these 4 parallel GPUs, I only get speed of 66 ns/day. What is wrong ?
>
> Below is the output of "nvidia-smi"
>
> +-----------------------------------------------------------------------------+
> | NVIDIA-SMI 367.57 Driver Version:
> 367.57 |
> |-------------------------------+----------------------+----------------------+
> | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr.
> ECC |
> | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute
> M. |
> |===============================+======================+======================|
> | 0 GeForce GTX 1080 Off | 0000:02:00.0 On |
> N/A |
> | 52% 72C P2 80W / 180W | 744MiB / 8111MiB | 51%
> Default |
> +-------------------------------+----------------------+----------------------+
> | 1 GeForce GTX 1080 Off | 0000:03:00.0 Off |
> N/A |
> | 51% 74C P2 72W / 180W | 525MiB / 8113MiB | 42%
> Default |
> +-------------------------------+----------------------+----------------------+
> | 2 GeForce GTX 1080 Off | 0000:82:00.0 Off |
> N/A |
> | 47% 71C P2 71W / 180W | 525MiB / 8113MiB | 44%
> Default |
> +-------------------------------+----------------------+----------------------+
> | 3 GeForce GTX 1080 Off | 0000:83:00.0 Off |
> N/A |
> | 51% 73C P2 73W / 180W | 525MiB / 8113MiB | 43%
> Default |
> +-------------------------------+----------------------+----------------------+
>
>
> +-----------------------------------------------------------------------------+
> | Processes: GPU
> Memory |
> | GPU PID Type Process name
> Usage |
> |=============================================================================|
> | 0 3020 G /usr/lib/xorg/Xorg
> 168MiB |
> | 0 3566 G compiz
> 73MiB |
> | 0 10231 C pmemd.cuda_SPFP.MPI
> 387MiB |
> | 0 10232 C pmemd.cuda_SPFP.MPI
> 111MiB |
> | 1 10231 C pmemd.cuda_SPFP.MPI
> 111MiB |
> | 1 10232 C pmemd.cuda_SPFP.MPI
> 411MiB |
> | 2 10233 C pmemd.cuda_SPFP.MPI
> 411MiB |
> | 2 10234 C pmemd.cuda_SPFP.MPI
> 111MiB |
> | 3 10233 C pmemd.cuda_SPFP.MPI
> 111MiB |
> | 3 10234 C pmemd.cuda_SPFP.MPI
> 411MiB |
> +-----------------------------------------------------------------------------+
>
>
>
> Thanks,
> Hirdesh
> _______________________________________________
> AMBER mailing list
> AMBER.ambermd.org
> http://lists.ambermd.org/mailman/listinfo/amber
_______________________________________________
AMBER mailing list
AMBER.ambermd.org
http://lists.ambermd.org/mailman/listinfo/amber
Received on Fri Jan 27 2017 - 17:30:02 PST