
Amber 24 and AmberTools 24 Install on Ubuntu 24.04 - https://ambermd.org/InstDebian.php

Before you install the software:

Note that Synaptic Package Manager is available under Applications, System (install Gdebi from MX
Package Installer - later).

As far as possible, install software from the MC Package Installer (always choose to also install the
Recommended packages) or the Synaptic App. If not possible, download the required Deb (and
dependencies) file from - https://www.debian.org/distrib/

Another option is to use the normal Ubuntu way:

$ sudo apt-get install appname

See python version:

$ python3 -V (mine gave version 3.11)

It seems that Amber 24 (page 25) requires the latest version (Python 3.11 was installed)

Note that Amber 24 supports Cuda up to version 11.4 (Page 21 of the manual). (cuda is installed later)

However, the GNU version (according to
“/home/gert/amber24_src/build/CmakeFiles/CmakeOutput.log” is version 11.3. (I tried Cuda version
11.4 first, but it gave an error: “Error: Incompatible CUDA and GNU versions 11.3.0”)

See table on which version of gcc and c++ works with this cuda version (11.3):
 https://stackoverflow.com/questions/6622454/cuda-incompatible-with-my-gcc-version

According to the table, this requires gcc-10 (g++ and gfortran as well). Note that the default version
that was installed is version 13.2. So you have to use “update-alternatives”.

Install gcc-10 and then g++-10 and gfortran-10:

sudo apt-get install gcc-10
sudo apt-get install g++-10
sudo apt-get install gfortran-10

$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 30
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 30
$ sudo update-alternatives --install /usr/bin/gfortran gfortran /usr/bin/gfortran-10 30

$ gcc --version
$ g++ --version
$ gfortran --version

https://ambermd.org/InstDebian.php
https://stackoverflow.com/questions/6622454/cuda-incompatible-with-my-gcc-version
https://www.debian.org/distrib/

See if your PC has a GPU card:

$ sudo lshw -numeric -C display

Then make sure your GPU card is supported in Amber - https://ambermd.org/gpus16/index.htm

Use the MX Package installer and install the following Nvidia options (cuda is installed later):

nvidia-alternative, nvidia-detect, nvidia-driver, nvidia-driver-bin, nvidia-installer-cleanup, nvidia-
kernel-common, nvidia-kernel-dkms, nvidia-kernel-source, nvidia-kernel-support, gpustat, (make sure
you DON’T install Nvidia-toolkit at all! Version 11.8 will be installed and only version 11.4 is
supported)

If you have a Nvidia card, record the details and find the correct version of the recommended the driver
from https://www.nvidia.com/Download/index.aspx?lang=en-us (don’t download it). In my case the
X64 version 515 was recommended.

The correct Nvidia driver should now be installed.

If required, use the “Nvidia Driver Installer” application to install the correct Nvidia drivers.

(To restore open source drivers later use (if required): $ sudo ddm-mx -p nvidia)

Note that the “Nvidia X Server Settings” App is installed after successful installation of the Nvidia
Driver.

sudo apt-get install tcsh cmake flex flexc++ bison bisonc++ wget pwget python3-wget wget2
openssh-client intel-mkl intel-mkl-cluster patch bc fftw2 python3-pyfftw sfftw2 gedit gedit-common
gdebi gnome-system-monitor

(gnome-system-monitor is used to see how many CPUs are used during a calculation – System
Monitor)

sudo apt-get install python3 python3-libapparmor python3-libdnf python3-matplotlib python3-numpy
python3-packaging python3-scipy python3-setuptools python3-setuptools-git python3-venv python-is-
python3 python-dev-is-python3

Install with Synaptic Package Manager:
libbz2, libbz2-dev, libzip-dev, xorg-dev, zlib, (not available)

Install VMD.

Install an older (or multiple) version(s) of Cuda: (if required)

How to find the Cuda directory:

https://www.nvidia.com/Download/index.aspx?lang=en-us
https://ambermd.org/gpus16/index.htm

$ locate cuda

https://stackoverflow.com/questions/40517083/multiple-cuda-versions-on-machine-nvcc-v-confusion

Cuda is normally installed under the /usr/local/ folder

To install other versions (such as Cuda 11.3) go to - https://developer.nvidia.com/cuda-toolkit-archive

Download the latest Ubuntu version (runfile).

Then install them using the instruction for the runfile option. It works well (don’t reinstall the Nvidia
Driver!).

Note that it will give an error if the gcc (and G++ versions) does not match.

Message after 11.3 was installed:

Please make sure that
 - PATH includes /usr/local/cuda-11.3/bin
 - LD_LIBRARY_PATH includes /usr/local/cuda-11.3/lib64, or, add /usr/local/cuda-11.3/lib64 to
/etc/ld.so.conf and run ldconfig as root

Then add the following to the ~/.bashrc file (change for the required Cuda version):

https://stackoverflow.com/questions/19980412/how-to-let-cmake-find-cuda

$ gedit ~/.bashrc

export CUDA_HOME=/usr/local/cuda-11.3
export PATH="/usr/local/cuda-11.3/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH"

Then:

source ~/.bashrc

See https://www.cs.colostate.edu/~info/cuda-faq.html

Open and close the terminal so that the changes in the bashrc file is read.

$ nvcc -V (should give 11.3)

How to find the Cuda directory:

$ locate cuda (does not work??)

The “NVIDIA X Server Settings” should be installed after this (Reboot the computer if you cannot see
the GPUs).

https://www.cs.colostate.edu/~info/cuda-faq.html
https://stackoverflow.com/questions/19980412/how-to-let-cmake-find-cuda
https://developer.nvidia.com/cuda-toolkit-archive
https://stackoverflow.com/questions/40517083/multiple-cuda-versions-on-machine-nvcc-v-confusion

See what driver is installed:

$ sudo lshw -c video | grep 'configuration'

Then open Nvidia X Server Settings app to see if the GPU’s are seen?

$ sudo apt install mesa-utils

$ glxgears

Another option - https://www.chaos.com/vray/benchmark?AFFILIATE=120043

And see if the GPU show variable activity?

Amber22 and AmberTools22:

Download the compressed Amber and AmberTools files and extract them to your home directory.

Follow the instructions in the Amber22 manual and https://ambermd.org/InstUbuntu.php

According to the latter, there are only 2 requirements: Cmake and the latest version of Python. Both
were already installed (above).

Install the serial version of Amber24 first.

$ cd amber24_src/build

Make a back-up of the “run_cmake” file so that you can use it later if required:

$ cp run_cmake run_cmake_old (also make run_cmake_mpi and run_cmake_nccl)

I changed the following in the “run_cmake” script:
$ gedit run_cmake run_cmake_old

Assume this is Linux:

 cmake $AMBER_PREFIX/amber24_src \
 -DCMAKE_INSTALL_PREFIX=$AMBER_PREFIX/amber24 \
 -DCOMPILER=GNU -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-11.3 \
 -DMPI=FALSE -DCUDA=TRUE -DINSTALL_TESTS=TRUE \
 -DDOWNLOAD_MINICONDA=FALSE \
 2>&1 | tee cmake.log

(use $./clean_build if you want to restart a clean build).

The serial installation and tests worked well using the commands from the Amber22 Manual (0 tests
experienced errors).

https://ambermd.org/InstUbuntu.php
https://www.chaos.com/vray/benchmark?AFFILIATE=120043

The “./run_cmake” command then gave 2 or so more python errors with missing python packages, that
I could all install using Synaptic Package Manager.

The “make install” install command then also worked without errors.

$ CC=gcc CXX=g++ | ./run_cmake (Duy used this command to specify the path for fortran
Using gcc and g++)

$ gedit ~/.bashrc

Add “source /home/gert/amber24/amber.sh” right at the bottom and safe the file.

source ~/.bashrc

MPI and Cuda install:

Read the information provided in the manual (Par 2.2.1 and 2.2.2).

For QM/MM: “Depending on the MPI implementation, this can, however, fail. In our experience,
MPICH and MVAPICH work well while OpenMPI does not work.” (page 166 of the manual)

Mpich installation is described below.

To compile the parallel version of Amber:

$ cd amber24_src/AmberTools/src/
[note the command in the manual (cd $AMBERHOME/AmberTools/src) takes you to the wrong
directory!]

Make the following changes before you run “./configure_mpich gnu”:

Otherwise it will give some errors:

“You must download MPICH and extract it here (in amber24_src/AmberTools/src/)
 (for example, type 'tar xvfz mpich-3.3.2.tar.gz')
See http://www.mpich.org for more info;
Then, re-run this script.”

(Download the First mpich-4.1 (stable release) at the top)

“configure: error: The Fortran compiler gfortran does not accept programs that call the same routine
with arguments of different types without the option -fallow-argument-mismatch. Rerun configure with
FFLAGS=-fallow-argument-mismatch and FCFLAGS=-fallow-argument-mismatch
 MPICHls configure failed, returning 1”

Open the “configure_mpich” script with a text editor and change the “gnu” part as follows:

$ gedit configure_mpich

#################### gcc #######
gnu)
 cc=gcc
 cflags=-fPIC
 cplusplus=g++
 ocflags=-O3
 fc=gfortran
 fcflags=-fallow-argument-mismatch
 fflags=-fallow-argument-mismatch

 ;;

(Note use small letters and not “ FFLAGS” and “FCFLAGS” as the system suggested. Also, the order
should be reversed as above.)

Then run the command:

$./configure_mpich gnu

(This takes a very long time. Perhaps 3 or more hours. 2 hour and 20 minutes on the new Power PC).
(Twice I got a permission error – used “sudo ./configure_mpich gnu“ and it then worked)

Open a new Terminal tab:

Go into the “amber22_src/build/” directory.

$ cd ~
$ cd amber24_src/build

$ gedit run_cmake_mpi

This one worked:

Assume this is Linux:

 cmake $AMBER_PREFIX/amber24_src \
 -DCMAKE_INSTALL_PREFIX=$AMBER_PREFIX/amber24 \
 -DCOMPILER=GNU -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-11.3 \
 -DMPI=TRUE -DCUDA=TRUE -DINSTALL_TESTS=TRUE \
 -DDOWNLOAD_MINICONDA=FALSE \
 2>&1 | tee cmake.log

Then follow the instructions from the manual. Last, do the test.

$./run_cmake_mpi

$ make install

$ cd $AMBERHOME

$ export DO_PARALLEL="mpirun -np 30"

$ make test.parallel

This test gave an error: “Error: Could not import Amber Python modules! Probably your Amber
Python environment was not set up correctly.”

This solution worked - http://archive.ambermd.org/202202/0036.html :

[Did not use this for Ubuntu:

$ gedit ~/.bashrc

Add the following lines:

export PYTHONPATH=$AMBERHOME/lib/python3.11/site-packages

export PYTHONPATH=$AMBERHOME/lib/python3.11/site-packages:$PYTHONPATH

End]

Summary of AmberTools parallel tests:

961 file comparisons passed
16 file comparisons failed (2 of which can be ignored)
17 tests experienced errors

21.6.5. Installation and Testing - GPU Accelerated PMEMD (page 439)

Building pmemd.cuda.MPI with NCCL support (page 440) and with Quick.

Download the local installer for Ubuntu 20.04 (deb file) via the website
(https://developer.nvidia.com/nccl/nccl-download then choose older versions (11.3) at
https://developer.nvidia.com/nccl/nccl-legacy-downloads) and install the Network installers (x86)
 (Ubuntu 20.04) using the provided commands (from my Downloads directory). (you should use the
Google Authenticator on your Phone when logging into the above web site).

Note I had to do the command at the bottom as well (otherwise it gave NCCL errors):

$ sudo apt install libnccl2=2.8.4-1+cuda11.2 libnccl-dev=2.8.4-1+cuda11.2

https://developer.nvidia.com/nccl/nccl-legacy-downloads
https://developer.nvidia.com/nccl/nccl-download
http://archive.ambermd.org/202202/0036.html

Gave an error:
E: Unable to locate package libnccl2
E: Unable to locate package libnccl-dev

Fix the package not signed error:

https://forums.developer.nvidia.com/t/invalid-public-key-for-cuda-apt-repository/212901/11

$ sudo apt-key adv --fetch-keys
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
$ sudo apt-key adv --fetch-keys
https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/
x86_64/7fa2af80.pub

This worked.

Then repeat the NCCL install and then again:

sudo apt install libnccl2=2.8.4-1+cuda11.2 libnccl-dev=2.8.4-1+cuda11.2

Edit the cmake file:

$ cd amber24_src/build

Add the path in the the bashrc file:

$ gedit ~/.bashrc

Add the following line at the end:

export NCCL_HOME=/usr/lib/x86_64-linux-gnu/

$ source ~/.bashrc

Then change the “run_cmake” file again (add :”-DNCCL=TRUE”):

Save the file as: run_cmake_nccl

This one worked:

Assume this is Linux:

 cmake $AMBER_PREFIX/amber22_src \
 -DCMAKE_INSTALL_PREFIX=$AMBER_PREFIX/amber24 -DNCCL=TRUE \
 -DCOMPILER=GNU -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-11.3 \

https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
https://forums.developer.nvidia.com/t/invalid-public-key-for-cuda-apt-repository/212901/11

 -DMPI=TRUE -DCUDA=TRUE -DINSTALL_TESTS=TRUE \
 -DDOWNLOAD_MINICONDA=FALSE -DBUILD_QUICK=FALSE \
 2>&1 | tee cmake.log

Then execute the file:

$./run_cmake_nccl

$ make install

If that works, also activate -DBUILD_QUICK=TRUE and re-run the same commands.

GPU Benchmark tests: - https://www.exxactcorp.com/blog/Molecular-Dynamics/RTX3090-
Benchmarks-for-HPC-AMBER22-A100-vs-RTX3080-vs-RTX3070-vs-RTX6000

Make Amber available to other users:

Log into the account of the other user(s):

Go to your /home/user/ account, and do the following (change username as required):

sudo su
chmod 755 /home/gert/amber24/amber.sh

exit

(other options if required:
chmod 755 /home
chmod 755 /home/gert
chmod 775 /home/gert/amber24
end of other options)

That will allow other users to execute the amber.sh script.

Also ensure that you add the Amber line (source /home/gert/amber24/amber.sh) in the ~/.bashrc file for
the other users as well.

sudo gedit /home/user/.bashrc

source /home/user/.bashrc

Test if amber is working:

$ tleap

https://www.exxactcorp.com/blog/Molecular-Dynamics/RTX3090-Benchmarks-for-HPC-AMBER22-A100-vs-RTX3080-vs-RTX3070-vs-RTX6000
https://www.exxactcorp.com/blog/Molecular-Dynamics/RTX3090-Benchmarks-for-HPC-AMBER22-A100-vs-RTX3080-vs-RTX3070-vs-RTX6000

(Should give you some positive reaction).

(this worked for Amber22 on MX Linux 23.1. Did not work for Amber24 on MX Linux 23.3?)

Install later version of Python (3.11):
https://techviewleo.com/how-to-install-python-3-on-debian/

(Also see addition document!)

If MX Package Installer is used to install Nvidia-Toolkit:
Next make sure were Cuda Toolkit was installed:

$ dpkg-query -L nvidia-cuda-toolkit (/usr/lib/cuda, /usr/lib/cuda/bin, /usr/lib/nvidia-cuda-toolkit/,
/usr/lib/nvidia-cuda-toolkit/bin, last one has the nvcc execuable)

$ sudo gedit ~/.bashrc

export CUDA_HOME=/usr/lib/nvidia-cuda-toolkit/bin/

Install Nvidia HPC SDK - https://developer.nvidia.com/hpc-sdk The earlier versions is at -
https://developer.nvidia.com/nvidia-hpc-sdk-releases and 11,2 at https://developer.nvidia.com/nvidia-
hpc-sdk-213-downloads

I used the Linux x86_65 Tarball option. I used sudo for the last command.

Errors with solutions:

amber22_src/src/pmemd/src/xray/cuda/src/xray/BulkMaskGPU.cu". CMake Error at
pmemd_xray_cuda_generated_BulkMaskGPU.cu.o.RELEASE.cmake:278 (message): Error generating
file.

http://archive.ambermd.org/202208/0112.html (solution works).

http://archive.ambermd.org/202208/0112.html
https://developer.nvidia.com/nvidia-hpc-sdk-213-downloads
https://developer.nvidia.com/nvidia-hpc-sdk-213-downloads
https://developer.nvidia.com/nvidia-hpc-sdk-releases
https://developer.nvidia.com/hpc-sdk
https://techviewleo.com/how-to-install-python-3-on-debian/

