Page 7 of 40

3 &N. File: /home/jkalliau/prgm/amberl6/AmberTools/src/sander/egb.FO0

g #endif

onstep = mod(irespa,nrespa) ==
onstepi = mod{irespa,nrespai} == 0
if(.not.onstepi) return

oncpstep = (icnstph == 1 .and. mod(irespa, ntcnstph) == @) .or. icnstph == 2

if{alpb == 1) then
1 Sigalov Onufriev ALPB (epsilon-dependent GB):
alpb_beta = alpb_alpha*(intdiel/extdiel)
extdieli = one/(extdiel*(one + alpb_beta))
intdieli = one/(intdiel*(one + alpb_beta))
one_Arad_beta = alpb_beta/Arad
if (kappa/=zero) onekappa = one/kappa

else
! Standard Still's GB - alpb=0
4oy extdieli = one/extdiel
Anv intdieli = one/intdiel
11 one_Arad_beta = zero
end if

Smooth "cut-off" in calculating GB effective radii.

Implementd by Andreas Svrcek-Seiler and Alexey Onufriev.

The integration over solute is performed up to rgbmax and includes
parts of spheres; that is an atom is not just "in" or "out", as
with standard non-bonded cut. As a result, calclated effective
radii are less than rgbmax. This saves time, and there is no
discontinuity in dReff/drij.

Only the case rgbmax > 5*max(sij) = 5*fsmax ~ 9A is handled; this is
enforced in mdread(). Smaller values would not make much physical
sense anyway.

rgbmax2 = rgbmax*rgbmax

rgbmaxli = one/rgbmax

rgbmax2i = rgbmaxli*rgbmax1i
rgbmaxpsmax2 = (rgbmax+fsmax)**2

#ifdef LES
! initialize some things for GB+LES

! one over number of LES copies
! GB+LES only works with 1 LES region so we can't have multiple
! copy numbers like we can with PME

1fac = float(ncopy)
1faci = one/(1fac)

#else
| ncopy2 = ncopy
#endif

|
| The effective Born radii are now calculated via a call at the
{ beginning of force.
|
I

iexcl = 1 !moved to outside the index loop from original location in “step 2"

#ifdef MPI
do i=1,mytaskid

& o

@M% File: /nome/jkalliau/prgm/amberl6/AmberTools/src/sander/egb.F90

Page 8 of 40

iexcl = iexcl + numex(i)
end do
mpistart = mytaskid+l
#endif

*vw maxi = natom

if(natbel > @) maxi = natbel

| e e mmm e e e e e e e e e e e

! Step 2: loop over all pairs of atoms, computing the gas-phase

! electrostatic energies, the LJ terms, and the off-diagonal
! GB terms. Also accumulate the derivatives of these off-

! diagonal terms with respect to the inverse effective radii,
| sumdeijda(k) will hold sum over i,j>i (deij/dak }, where
! "ak" is the inverse of the effective radius for atom "k".

]

| Update the forces with the negative derivatives of the
1 gas-phase terms, plus the derivatives of the explicit

| distance dependence in Fgb, i.e. the derivatives of the
! GB energy terms assuming that the effective radii are

| constant.

_

#ifdef LES
sumdeijda(l:natom*ncopy) = zero
#else
sumdeijda{l:natom) = zero
#endif

call timer_start(TIME_GBFRC)

! Note: this code assumes that the belly atoms are the first natbel
! atoms...this is checked in mdread.

. #ifdef MPI . y
*NW do i=mpistart,mgxi,numtasks YvN.&.\a _\‘N%
#else ey
:lw\v do i=1,maxi
#endif T2 ¥6
#ifdef LES
) lestmp = nlesty*(lestyp(i)-1) ?Nﬂ*
#endif \\\S\U W _FKNA\

xi = x(3*i-2)

i= x(3*i-1) b [adr d, o Y ¢
oo Mm,. des %c\&u (mh\.;.\ ﬁx%&ﬁ\@
= charge(i).l ae
oy % o ey L
z

L}
“« four_ri =(fourtreff(i)/]
L laci -1 -1
- - L
L .ﬂ.\.\..\wwmﬂnﬁmmd = iexcl + numex(i) -1 [-]
—= W < dumx = zero
= x dumy = zero
oo dumz = zero
: A
. M #if defined(LES)
W oy icnum = cnum(i)
< o nrg_vdw_tmp = zero
I P nrg_ele_tmp = zero
A - nrg_egb_tmp = zero
X ., fendif
S
~
—~< N
P
L
<

PR A H] .
Nlrins (¢ Seagef «d Boin \.sk: . \d&ﬁ\ém radi;

File: fhome/jkalliau/prgm/amber16/AmberTools/src/sander/egb.F90 Page 11 of 40

e: /home/jkalliau/prgm/amberl6/AmberTools/src/sander/egh.F90 Page 12 of 40

_m\VfA endif *\a! lesscalefac(icount)=templfac

endif

! set first to F so that only the first of these i,j

istrt = ncopy * (i-1) ! entries will have nonbonds

jstrt = ncopy * {j-1)
first=.false.

first=.true. enddo ! LOOP OVER K, pairs of reff for i and j

do k=idxl,idx2 #endif
e end if !r2 <= cut ,)
) s - =N _
! non-LES uses just ri (reff(i)) in this loop, doesn't need to be vector ﬁNf end do ! 151 ‘..P.ar”?x IV TCoygnt s 3&33 -
rix(icount+l)=reff(istrt+k) if(igb/=6) then g %N\&
reff_j=reff(jstrt+k) #ifdef LES
! rix needs to be used instead of ri since i doesn't have just 1 reff
! set longskipv, which serves the purpose of telling if an atom is vectmpl(l:icount) = *ocﬂ.ﬂpxﬁwwwnac:n_.ﬁuxﬁwwpnncznv
! excluded and also telling if this is not the first in the loop over #else o
733) vectmpl(l:icount) = four_ri*rix(l:icount)
! pairs of reff for an atom (only calculate nonbonds for the first pair of reff) #endif . i) leiwdu u\/. W'l 7 .-.MM
! longskipv is only set for the icount atoms! (not all j like skipv) &l §1o0f T AL 705 L \
cell wdinw{ icount, vectmpl, wvectmpl) !Invert things
if ((.not.first).or.skipv(j)) then NW.N vectmpl(l:lcount) = -r2x({l:icount)*vectmpl{l:icount)
longskipv(icount+l)=.true. 73y call vdexp{ icount, vectmpl, vectmpl | 2,05, . N At
else ! lends up with Exp(-rij~2/[4*ai*aj|]] . W =
longskipv(icount+l)=.false. #ifdef LES
endif !

ri is not the same for all of the icount!
vectmp3(1l:icount) = r2x(l:icount) + &
rjx(l:icount)*rix(l:icount)*vectmpl(l:icount) 'ends up with fij

for LES we need to know which reff this is when we calculate the sumdeija
so set a pointer here to tell us which reff this i,j pair are using #else
this points directly into correct spot in reff or sumdeijda

<nﬁﬂauwnwnwnoc:ﬁ_Unmxﬂw"Hnnc:H”+wumnwupnccsﬁu.ﬂH;xWAAEnph.Hnncznv
| |ends up with TiJ] \ 3 1 i

iridx(icount+1) = istrt+k #endif Lo toqry DIk S

jridx(icount+l) = jstrt+k - ’ 24 YO

CARLOS: LES

we now have two sets of vectors: one is 1 to last atom, the other

is 1 to icount

the atom one is for vdw/ele and for excl, the other is for gb offdiag

which do we loop over? unless we have a pointer we need to loop

over the bigger one, have a pointer j in it, and pull excl out

of that. but how to know to skip the nonbonds for all after the

first in a loop over a pair? maybe we should have the excl loop

done for icount, not atoms.

SKIPY PART OK, DO THE DISTANCE PART SO WE DON'T HAVE TO INV ALL RIJ

FOR NOW IT'S OK, JUST SLOW

! set flag to tell whether sumdeijda needs to be dividing among components for non-

LES atoms
! temporary value was set above

spreadfrc(icount+1l) = spread

else
! set for non-LES case so we can refer to reff_j not reff(j)
! this is needed with LES since each atom j has multiple reff

reff_3 = reff(3) thq T i3 ! Jiuse u&._\bw.w . " [.\?L,

] g | call vdinvsqrt(icount, vectmp3, cmnmwmw)} lvectmp2 = 1/fij
=2 j@ ¥, = -

icount = igount-+ 1 if(kappa /= zero) then

.SY_V

—

temp_jj(icount) = j§

i call vdinv(icount, vectmp2, vectmp3)
g rZx(icount) = r2 Al ; - vectmp3(1l:icount) = -kappa*vectmp3(1l:icount}
thytaad - 766 call vdexp(icount, vectmp3, vectmpd) !exp(-kappa*fij) -1

! carlos changed this, we are STILL INSIDE LOOP OVER K for multiple LES reff_j end if |

! so we need to use reff_j not reff(j) (since LES may have multiple reff_j for

atom j) end if

P call vdinvsqrt(icount, r2x, vectmps)
706 rix(icount) = reff j _Zeil 15 h\é - ISR A
vectmpl = Exp(-rij~2/[4*ai®aj])A 4 74§
#ifdef LES i

vectmp2 = 1/fij,
vectmp3 = -kappa*fij - if kappa/=zero, otherwise = fij
vectmpd = exp(-kappa*fij)
vectmp5 = 1/rij - note with gmmm this contains the
!distance to mm_link pairs not to QM link atoms,

! set scaling factor here where we know if we are doing
averaging over multiple radii. in the loops below we don't
have that info anymore without checking nradii

we couldn't set these above since we didn't have an

icount value yet

- Start first outer loop ----

scalefac(icount)=tempscale dir$ ivdep

