Entering Gaussian System, Link 0=g09 Input=organometallic_small_fc.com Output=organometallic_small_fc.log Initial command: /opt/Chem_soft/g09/l1.exe ./Gau-18645.inp -scrdir=./ Entering Link 1 = /opt/Chem_soft/g09/l1.exe PID= 18646. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevB.01 12-Aug-2010 31-Oct-2016 ****************************************** %Chk=organometallic_small_opt.chk %Mem=3000MB %NProcShared=16 Will use up to 16 processors via shared memory. ---------------------------------------------------------------------- #N B3LYP/SDD Freq=NoRaman Geom=AllCheckpoint Guess=Read Integral=(Grid =UltraFine) SCF=XQC IOp(7/33=1) ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1/1,3; 2/12=2,40=1/2; 3/5=17,6=7,11=2,14=-4,16=1,25=1,30=1,71=2,74=-5,75=-5,116=-2/1,2,3; 4/5=1/1; 5/5=2,8=3,13=1,38=6,98=1/2,8; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1,33=1/1,2,3,16; 1/10=4,30=1/3; 99//99; --- CLR --- No Z-matrix found on checkpoint file. Cartesian coordinates read from the checkpoint file: organometallic_small_opt.chk Charge = 2 Multiplicity = 2 Co -0.140000000000 0.004000000000 -0.128000000000 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 27 0 -0.140000 0.004000 -0.128000 --------------------------------------------------------------------- Stoichiometry Co(2+,2) Framework group OH[O(Co)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 27 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: SDD (6D, 10F) There are 15 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 3 symmetry adapted basis functions of B2G symmetry. There are 3 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 8 symmetry adapted basis functions of B1U symmetry. There are 8 symmetry adapted basis functions of B2U symmetry. There are 8 symmetry adapted basis functions of B3U symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 49 basis functions, 75 primitive gaussians, 49 cartesian basis functions 8 alpha electrons 7 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 120 NPrTT= 264 LenC2= 121 LenP2D= 264. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 49 RedAO= T NBF= 15 3 3 3 1 8 8 8 NBsUse= 49 1.00D-06 NBFU= 15 3 3 3 1 8 8 8 Initial guess read from the checkpoint file: organometallic_small_opt.chk B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (?A) (T2G) Virtual (?A) (?A) (T1U) (T1U) (T1U) (?A) (?B) (?B) (?B) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (A1G) (?B) (?B) (?A) (?B) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (?C) (?C) (?C) (?C) (?C) (?C) (A2U) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (?A) (?B) (?B) (?B) (T2G) (T2G) (T2G) Virtual (?A) (?A) (?A) (?C) (?C) (?C) (?A) (T2G) (T2G) (T2G) (?A) (?A) (?C) (?C) (?C) (?A) (?A) (T2G) (T2G) (T2G) (?A) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (?B) (?B) (?B) (A2U) (?B) (?B) (?B) (?B) (?B) (?B) (A1G) (T1U) (T1U) (T1U) (A1G) Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7506 S= 0.5003 Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 and R2 ints in memory in canonical form, NReq=3487384. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. SCF Done: E(UB3LYP) = -144.761550560 A.U. after 1 cycles Convg = 0.3802D-11 -V/T = 2.6288 = 0.0000 = 0.0000 = 0.5000 = 0.7506 S= 0.5003 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7506, after 0.7500 QCSCF skips out because SCF is already converged. Range of M.O.s used for correlation: 1 49 NBasis= 49 NAE= 8 NBE= 7 NFC= 0 NFV= 0 NROrb= 49 NOA= 8 NOB= 7 NVA= 41 NVB= 42 **** Warning!!: The largest alpha MO coefficient is 0.13101988D+02 **** Warning!!: The largest beta MO coefficient is 0.13096148D+02 48 Symmetry operations used in ECPInt. ECPInt: NShTT= 120 NPrTT= 264 LenC2= 121 LenP2D= 264. LDataN: DoStor=T MaxTD1= 7 Len= 274 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 2 centers at a time, making 1 passes doing MaxLOS=3. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. FoFDir/FoFCou used for L=0 through L=3. End of G2Drv Frequency-dependent properties file 721 does not exist. End of G2Drv Frequency-dependent properties file 722 does not exist. IDoAtm=1 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 and R2 ints in memory in canonical form, NReq=3443804. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=5. 3 vectors produced by pass 0 Test12= 1.04D-14 1.67D-08 XBig12= 1.50D+00 5.56D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.04D-14 1.67D-08 XBig12= 1.54D-02 6.47D-02. 3 vectors produced by pass 2 Test12= 1.04D-14 1.67D-08 XBig12= 4.15D-04 6.37D-03. 3 vectors produced by pass 3 Test12= 1.04D-14 1.67D-08 XBig12= 1.65D-06 5.70D-04. 3 vectors produced by pass 4 Test12= 1.04D-14 1.67D-08 XBig12= 7.23D-09 3.63D-05. 3 vectors produced by pass 5 Test12= 1.04D-14 1.67D-08 XBig12= 1.39D-11 2.22D-06. 3 vectors produced by pass 6 Test12= 1.04D-14 1.67D-08 XBig12= 3.73D-14 8.07D-08. Inverted reduced A of dimension 21 with in-core refinement. Isotropic polarizability for W= 0.000000 2.16 Bohr**3. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (?A) (T2G) Virtual (?A) (?A) (T1U) (T1U) (T1U) (?A) (?B) (?B) (?B) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (A1G) (?B) (?B) (?A) (?B) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (?C) (?C) (?C) (?C) (?C) (?C) (A2U) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (?A) (?B) (?B) (?B) (T2G) (T2G) (T2G) Virtual (?A) (?A) (?A) (?C) (?C) (?C) (?A) (T2G) (T2G) (T2G) (?A) (?A) (?C) (?C) (?C) (?A) (?A) (T2G) (T2G) (T2G) (?A) (?A) (?A) (T1U) (T1U) (T1U) (A1G) (?B) (?B) (?B) (A2U) (?B) (?B) (?B) (?B) (?B) (?B) (A1G) (T1U) (T1U) (T1U) (A1G) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -4.74861 -3.26528 -3.26085 -3.26085 -1.11211 Alpha occ. eigenvalues -- -1.11211 -1.11177 -1.06949 Alpha virt. eigenvalues -- -0.93023 -0.74879 -0.51568 -0.51093 -0.51093 Alpha virt. eigenvalues -- -0.27824 -0.25325 -0.25325 -0.24848 -0.24800 Alpha virt. eigenvalues -- -0.24286 -0.21073 -0.21024 -0.21024 -0.14712 Alpha virt. eigenvalues -- -0.00699 0.39639 0.39639 0.40088 0.41386 Alpha virt. eigenvalues -- 0.41677 0.63319 1.11171 1.12224 1.12224 Alpha virt. eigenvalues -- 2.62972 4.66798 4.66832 4.66832 4.67840 Alpha virt. eigenvalues -- 4.69459 4.69459 4.69637 7.47595 7.48854 Alpha virt. eigenvalues -- 7.48854 41.46952 51.88454 51.88831 51.88831 Alpha virt. eigenvalues -- 120.29537 Beta occ. eigenvalues -- -4.69079 -3.25249 -3.17526 -3.17526 -1.08562 Beta occ. eigenvalues -- -1.08562 -1.05577 Beta virt. eigenvalues -- -0.89753 -0.82224 -0.74115 -0.51520 -0.50499 Beta virt. eigenvalues -- -0.50499 -0.27652 -0.25224 -0.25224 -0.24937 Beta virt. eigenvalues -- -0.24030 -0.23322 -0.21088 -0.20868 -0.20868 Beta virt. eigenvalues -- -0.14658 -0.00522 0.40367 0.40367 0.41542 Beta virt. eigenvalues -- 0.42789 0.46017 0.63602 1.11743 1.15526 Beta virt. eigenvalues -- 1.15526 2.65920 4.69887 4.69887 4.70160 Beta virt. eigenvalues -- 4.70307 4.73310 4.77053 4.77053 7.48561 Beta virt. eigenvalues -- 7.54690 7.54690 41.52927 51.89361 51.93855 Beta virt. eigenvalues -- 51.93855 119.75806 Condensed to atoms (all electrons): 1 1 Co 15.000000 Mulliken atomic charges: 1 1 Co 2.000000 Sum of Mulliken atomic charges = 2.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Co 2.000000 Sum of Mulliken charges with hydrogens summed into heavy atoms = 2.00000 Atomic-Atomic Spin Densities. 1 1 Co 1.000000 Mulliken atomic spin densities: 1 1 Co 1.000000 Sum of Mulliken atomic spin densities = 1.00000 APT atomic charges: 1 1 Co 2.000000 Sum of APT charges= 2.00000 APT Atomic charges with hydrogens summed into heavy atoms: 1 1 Co 2.000000 Sum of APT charges= 2.00000 Electronic spatial extent (au): = 15.4801 Charge= 2.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.1073 YY= -7.1073 ZZ= -6.6066 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.1669 YY= -0.1669 ZZ= 0.3338 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -2.9448 YYYY= -2.9448 ZZZZ= -2.4510 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -1.1044 XXZZ= -1.0854 YYZZ= -1.0854 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-4.888519900459D+02 KE= 1.289855002671D+02 Symmetry AG KE= 1.601821020555D+01 Symmetry B1G KE= 2.461689585147D+01 Symmetry B2G KE= 2.488994230342D+01 Symmetry B3G KE= 2.488994230259D+01 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 1.288750825182D+01 Symmetry B2U KE= 1.284150067605D+01 Symmetry B3U KE= 1.284150067620D+01 Exact polarizability: 2.278 0.000 2.278 0.000 0.000 1.929 Approx polarizability: 2.345 0.000 2.345 0.000 0.000 2.022 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Co(59) -0.00010 -0.10972 -0.03915 -0.03660 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 1.783291 1.783291 -3.566581 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa -3.5666 -450.385 -160.709 -150.232 0.0000 0.0000 1.0000 1 Co(59) Bbb 1.7833 225.192 80.354 75.116 1.0000 0.0000 0.0000 Bcc 1.7833 225.192 80.354 75.116 0.0000 1.0000 0.0000 --------------------------------------------------------------------------------- Density matrix has only Abelian symmetry. Entering OneElI... Calculate overlap and kinetic energy integrals NBasis = 49 MinDer = 2 MaxDer = 2 Requested accuracy = 0.1000D-12 PrsmSu: NPrtUS= 16 ThrOK=T IAlg=1 NPAlg=1 LenDen= 0. Prism: IPart= 0 DynPar=F LinDyn=F Incr= 1. PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs PRISM was handed 24572455 working-precision words and 120 shell-pairs IPart= 13 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 14 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 8 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 6 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 15 NShTot= 0 NBatch= 0 AvBLen= 0.0 IPart= 11 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 4 NShTot= 10 NBatch= 10 AvBLen= 1.0 IPart= 9 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 12 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 10 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 1 NShTot= 22 NBatch= 22 AvBLen= 1.0 IPart= 7 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 5 NShTot= 7 NBatch= 7 AvBLen= 1.0 IPart= 2 NShTot= 16 NBatch= 16 AvBLen= 1.0 IPart= 3 NShTot= 11 NBatch= 11 AvBLen= 1.0 IPart= 0 NShTot= 28 NBatch= 28 AvBLen= 1.0 PrSmSu: NxtVal= 17. Entering OneElI... Calculate potential energy integrals NBasis = 49 MinDer = 2 MaxDer = 2 Requested accuracy = 0.1000D-12 PrsmSu: NPrtUS= 16 ThrOK=T IAlg=1 NPAlg=1 LenDen= 0. Prism: IPart= 0 DynPar=F LinDyn=F Incr= 1. PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs PRISM was handed 24572605 working-precision words and 120 shell-pairs IPart= 13 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 9 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 5 NShTot= 7 NBatch= 7 AvBLen= 1.0 IPart= 10 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 8 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 6 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 14 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 1 NShTot= 22 NBatch= 22 AvBLen= 1.0 IPart= 12 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 4 NShTot= 10 NBatch= 10 AvBLen= 1.0 IPart= 2 NShTot= 16 NBatch= 16 AvBLen= 1.0 IPart= 15 NShTot= 0 NBatch= 0 AvBLen= 0.0 IPart= 11 NShTot= 2 NBatch= 2 AvBLen= 1.0 IPart= 7 NShTot= 4 NBatch= 4 AvBLen= 1.0 IPart= 3 NShTot= 11 NBatch= 11 AvBLen= 1.0 IPart= 0 NShTot= 28 NBatch= 28 AvBLen= 1.0 PrSmSu: NxtVal= 17. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 120 NPrTT= 264 LenC2= 121 LenP2D= 264. LDataN: DoStor=F MaxTD1= 8 Len= 415 LDataN: DoStor=T MaxTD1= 8 Len= 415 ECPSu: NPrtUS= 16 ThrOK=T Polarizability after L701: 1 2 3 1 0.227816D+01 2 0.000000D+00 0.227816D+01 3 0.000000D+00 0.000000D+00 0.192883D+01 Dipole Derivatives after L701: 1 2 3 1 0.200000D+01 0.000000D+00 0.000000D+00 2 0.000000D+00 0.200000D+01 0.000000D+00 3 0.000000D+00 0.000000D+00 0.200000D+01 Hessian after L701: 1 2 3 1 0.000000D+00 2 0.000000D+00 0.000000D+00 3 0.000000D+00 0.000000D+00 0.000000D+00 Density matrix has only Abelian symmetry. ICntrl= 100127. Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. FoFJK: IHMeth= 1 ICntrl=100127 DoSepK=F KAlg= 1 I1Cent= 0 FoldK=F FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 800 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 100127 IOpCl= 1 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 0 NGrid= 0. Petite list used in FoFCou. FoFCou: KetSym=F NOpSet= 8 NOpAb=8 NOp= 8. FoFCou: CnvScl= 1.00D+00 Thresh= 1.00D-10 PrismS was handed 393198722 working-precision words and 120 shell-pairs FoFCou: LinMIO=F DoNuc=F BraDBF=F KetDBF=F HaveP=T PDBF=F HaveZ=T HaveW=F NIJTC = 10 NIJTAt= 0 NIJTCD= 0 NIJTT = 10 IJTBeg= 1 IJTEnd= 10 KLTBeg= 1 KLTEnd= 10 IPTBeg= 1 IPTEnd= 10 IPTBCv= 1 IPTECv= 10 IZTBeg= 1 IZTEnd= 10 IZTBCv= 1 IZTECv= 10 IWTBeg= 11 IWTEnd= 10 IWTBCv= 11 IWTECv= 10 INTBeg= 1 INTEnd= 0 IFTBCv= 1 IFTECv= 10 NCel replicated for PrismC: 1 CoulSu: IncDef= 1024 NBBP= 7260 NTPThr= 100 NPartT= 16 Incr= 4 LDynOK=F. CoulSu: NPrtUS= 16 ThrOK=T IAlg=1 NPAlg=1 LenDen= 0. Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC: IPart= 0 DynPar=F LinDyn=F Incr= 4 UseFst=F UseS4=T. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs Enter PrismC: JobTyp=22 DoJE=F Cont=F. Enter PrismC: JobTyp=22 DoJE=F Cont=F. PrismC was handed 24572354 working-precision words and 120 shell-pairs PrismC was handed 24572354 working-precision words and 120 shell-pairs IPart= 13 NShTot= 177 NShNF= 177 NShFF= 0 NBatch= 77 AvBLen= 2.3 IPart= 14 NShTot= 166 NShNF= 166 NShFF= 0 NBatch= 77 AvBLen= 2.2 IPart= 15 NShTot= 154 NShNF= 154 NShFF= 0 NBatch= 66 AvBLen= 2.3 IPart= 9 NShTot= 208 NShNF= 208 NShFF= 0 NBatch= 103 AvBLen= 2.0 IPart= 11 NShTot= 197 NShNF= 197 NShFF= 0 NBatch= 90 AvBLen= 2.2 IPart= 10 NShTot= 199 NShNF= 199 NShFF= 0 NBatch= 91 AvBLen= 2.2 IPart= 12 NShTot= 188 NShNF= 188 NShFF= 0 NBatch= 80 AvBLen= 2.4 IPart= 6 NShTot= 226 NShNF= 226 NShFF= 0 NBatch= 117 AvBLen= 1.9 IPart= 7 NShTot= 223 NShNF= 223 NShFF= 0 NBatch= 117 AvBLen= 1.9 IPart= 8 NShTot= 221 NShNF= 221 NShFF= 0 NBatch= 115 AvBLen= 1.9 IPart= 5 NShTot= 245 NShNF= 245 NShFF= 0 NBatch= 138 AvBLen= 1.8 IPart= 4 NShTot= 255 NShNF= 255 NShFF= 0 NBatch= 153 AvBLen= 1.7 IPart= 3 NShTot= 274 NShNF= 274 NShFF= 0 NBatch= 163 AvBLen= 1.7 IPart= 2 NShTot= 288 NShNF= 288 NShFF= 0 NBatch= 177 AvBLen= 1.6 IPart= 1 NShTot= 306 NShNF= 306 NShFF= 0 NBatch= 187 AvBLen= 1.6 IPart= 0 NShTot= 369 NShNF= 369 NShFF= 0 NBatch= 214 AvBLen= 1.7 CoulSu: NxtVal= 65. ReadGW: IGet=0 IStart= 1 Next= 572 LGW= 571. Remaining memory in FofDFT 374.99 Mw Pruned ( 99, 590) grid will be used in CalDFT. CkSvGd: ISavGI= -1 IRadAn= 5 IRASav= 5 ISavGd= -1. CalDSu: NPrtUS= 16 ThrOK=T IAlg=1 NPAlg=2 DoDPD=T LenP= 1225 LenD1P= 0. IPart= 0 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 7 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 5 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 IPart= 10 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 IPart= 1 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 15 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. IPart= 6 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. Pruned ( 99, 590) grid will be used in CalDFT. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 IPart= 8 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 2 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. Pruned ( 99, 590) grid will be used in CalDFT. IPart= 3 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. IPart= 9 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 12 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. IPart= 14 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. Pruned ( 99, 590) grid will be used in CalDFT. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 IPart= 11 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. IPart= 4 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. IPart= 13 IRanGd= 0 ScrnBf=T ScrnGd=T RCrit=4.00D+00 DoMicB=T. CutRad = 1000.00 CtRdIn = 0.00 XCrit = 15.00 ICut = 0 Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. Pruned ( 99, 590) grid will be used in CalDFT. IPart= 15 170 of 170 points in 1 batches and 1 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 8 170 of 170 points in 1 batches and 1 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 10 368 of 368 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 2 255 of 255 points in 2 batches and 5 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 13 340 of 340 points in 2 batches and 6 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 14 262 of 262 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 3 262 of 262 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 4 340 of 340 points in 2 batches and 6 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 6 262 of 262 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 1 262 of 262 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 0 262 of 262 points in 2 batches and 2 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 12 262 of 262 points in 2 batches and 3 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 9 340 of 340 points in 2 batches and 7 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 11 262 of 262 points in 2 batches and 4 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 5 372 of 372 points in 1 batches and 1 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 IPart= 7 362 of 362 points in 2 batches and 4 microbatches, Max-NSigAt= 1 Max-NSgAt2= 1 Polarizability after L703: 1 2 3 1 0.227816D+01 2 0.000000D+00 0.227816D+01 3 0.000000D+00 0.000000D+00 0.192883D+01 Dipole Derivatives after L703: 1 2 3 1 0.200000D+01 0.000000D+00 0.000000D+00 2 0.000000D+00 0.200000D+01 0.000000D+00 3 0.000000D+00 0.000000D+00 0.200000D+01 Hessian after L703: 1 2 3 1 0.000000D+00 2 0.000000D+00 0.000000D+00 3 0.000000D+00 0.000000D+00 0.000000D+00 FrcOut: IF = 31 IFX = 34 IFXYZ = 37 IFFX = 40 IFFFX = 46 IFLen = 3 IFFLen= 6 IFFFLn= 0 IEDerv= 46 LEDerv= 197 IFroze= 247 ICStrt= 5167 DipoleDeriv = 2.00000000D+00-1.76029074D-21-3.00176901D-22 1.67278528D-21 2.00000000D+00 7.39893175D-22 4.89725955D-22 1.55045387D-21 2.00000000D+00 VibFq2-Diag1: N= 3 IV= 2 MDV= 393210661 NE2= 131070220 Full mass-weighted force constant matrix: Low frequencies --- -0.0006 -0.0006 -0.0004 OrtVCM: Ph=1 IPass= 1 DotMx1= 0.00D+00 OrtVCM: IS= 1 I= 1 IndO= 1 Dot= 1.00D+00 DotN= 1.00D+00 ElMax1= 1.00D+00 ElMax1N= 1.00D+00 OrtVCM: Ph=2 NNew= 0 IAdd= 2 IPass= 1 DotMx2= 0.00D+00 OrtVCM: IS= 1 I= 2 IndO= 2 Dot= 1.00D+00 DotN= 1.00D+00 ElMax1= 1.00D+00 ElMax1N= 1.00D+00 OrtVCM: Ph=2 NNew= 0 IAdd= 3 IPass= 1 DotMx2= 0.00D+00 OrtVCM: IS= 1 I= 3 IndO= 3 Dot= 1.00D+00 DotN= 1.00D+00 ElMax1= 1.00D+00 ElMax1N= 1.00D+00 Diagonal vibrational polarizability: 0.0000000 0.0000000 0.0000000 NorSel: MapVib= Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 27 and mass 58.93320 Molecular mass: 58.93320 amu. Zero-point vibrational energy 0.0 (Joules/Mol) 0.00000 (Kcal/Mol) Vibrational temperatures: (Kelvin) Zero-point correction= 0.000000 (Hartree/Particle) Thermal correction to Energy= 0.001416 Thermal correction to Enthalpy= 0.002360 Thermal correction to Gibbs Free Energy= -0.016416 Sum of electronic and zero-point Energies= -144.761551 Sum of electronic and thermal Energies= -144.760134 Sum of electronic and thermal Enthalpies= -144.759190 Sum of electronic and thermal Free Energies= -144.777967 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 0.889 2.981 39.519 Electronic 0.000 0.000 1.377 Translational 0.889 2.981 38.142 Rotational 0.000 0.000 0.000 Vibrational 0.000 0.000 0.000 Q Log10(Q) Ln(Q) Total Bot 0.355652D+08 7.551025 17.386878 Total V=0 0.355652D+08 7.551025 17.386878 Vib (Bot) 0.100000D+01 0.000000 0.000000 Vib (V=0) 0.100000D+01 0.000000 0.000000 Electronic 0.200000D+01 0.301030 0.693147 Translational 0.177826D+08 7.249995 16.693731 Rotational 0.100000D+01 0.000000 0.000000 Forces in standard orientation: ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 27 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- ***** Axes restored to original set ***** Rotating derivatives, DoTrsp=F IDiff=-2 LEDeriv= 197 LFDPrp= 0 LDFDPr= 0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 27 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 Force constants in Cartesian coordinates: 1 2 3 1 0.000000D+00 2 0.000000D+00 0.000000D+00 3 0.000000D+00 0.000000D+00 0.000000D+00 Final forces over variables, Energy=-1.44761551D+02: 0.00000000D+00 0.00000000D+00 0.00000000D+00 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: X1 Y1 Z1 X1 0.00000 Y1 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 ITU= 0 Eigenvalues --- Angle between quadratic step and forces= 90.00 degrees. Linear search not attempted -- first point. TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 -0.26456 0.00000 0.00000 0.00000 0.00000 -0.26456 Y1 0.00756 0.00000 0.00000 0.00000 0.00000 0.00756 Z1 -0.24188 0.00000 0.00000 0.00000 0.00000 -0.24188 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy= 0.000000D+00 Optimization completed. -- Stationary point found. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Test job not archived. 1\1\GINC-CU09\Freq\UB3LYP\SDD\Co1(2+,2)\MYYANG\31-Oct-2016\0\\#N B3LYP /SDD Freq=NoRaman Geom=AllCheckpoint Guess=Read Integral=(Grid=UltraFi ne) SCF=XQC IOp(7/33=1)\\CLR\\2,2\Co,-0.14,0.004,-0.128\\Version=EM64L -G09RevB.01\HF=-144.7615506\S2=0.750559\S2-1=0.\S2A=0.75\RMSD=3.802e-1 2\RMSF=0.000e+00\Thermal=0.0014163\Dipole=0.,0.,0.\DipoleDeriv=2.,0.,0 .,0.,2.,0.,0.,0.,2.\Polar=1.9288284,0.,2.2781606,0.,0.,2.2781606\PG=OH [O(Co1)]\NImag=0\\0.,0.,0.,0.,0.,0.\\0.,0.,0.\\\@ THOSE WHO TRY TO PASS CHEMISTRY OFF AS A NEW SCIENCE SHOW HOW LITTLE KNOWLEDGE THEY HAVE OF THE CHARACTER AND LITERATURE OF THE ANCIENTS. -- NICOLAS LEFEVRE "COURS DE CHYMIE" J.-N.LELOUP, PARIS, 1751 Job cpu time: 0 days 0 hours 1 minutes 10.6 seconds. File lengths (MBytes): RWF= 92 Int= 0 D2E= 0 Chk= 2 Scr= 2 Normal termination of Gaussian 09 at Mon Oct 31 19:20:13 2016.