AMBER

Version 4.1

Amber 4.1 is a collaborative effort of the research groups of Peter Kollman (UCSF) and David Case
(Scripps). The authors of Amber 4 are:

David A. Pearlman (UCSF; currently Vertex Pharmaceuticals)
David A. Case (The Scripps Research Institute)
James W. Caldwell (UCSF)
Wilson S. Ross (UCSF)
Thomas E. Cheatham, III (UCSF)
David M. Ferguson (University of Minnesota)
George L. Seibel (for contributions to Amber version 3A while at UCSF)
U. Chandra Singh (for contributions to Amber versions 2 and 3 while at UCSF)
Paul Weiner (for contributions to Amber version 1 while at UCSF)
and

Peter A. Kollman (UCSF)

All contents Copyright (c) 1986, 1991, 1995, University of California.
All Rights Reserved.

Page 2

Acknowledgements

We acknowledge the generous cooperation of Wilfred van Gunsteren, whose molecular dynamics code
was used as the basis of the md modules in version 2.0. We are also pleased to acknowledge Rad
Olson and Bill Swope at IBM Almaden Center, whose contributions were instrumental in developing
the better vector optimized non-bonded routines first released in version 3, revision A. Research sup-
port from DARPA, the NIH, and the NSF for Peter Kollman is gratefully acknowledged, as is support
from the NIH for David Case. Use of the facilities of the UCSF Computer Graphics Laboratory
(Thomas Ferrin, PI) is appreciated. We thank Nelson H.F. Beebe of the University of Utah for permis-
sion to include his “portable namelist” code. Wendy Cornell contributed a discussion of charge
derivation to the manual and added demos and documentation for the RESP program. We also thank
Allison Howard and Valerie Daggett for various helpful discussions and suggestions. Many people
helped add features to various codes in 4.1; these contributions are described in the documentation for
the individual programs.

Recommended Citation:

When citing Amber Version 4.1 in the literature, the following citation should always be used:

David A. Pearlman, David A. Case, James W. Caldwell, Wilson S. Ross, Thomas E. Cheatham
III, David M. Ferguson, George L. Seibel, U. Chandra Singh, Paul K. Weiner and Peter A.
Kollman (1995), AMBER 4.1, University of California, San Francisco.

In addition, you may wish to also cite the author(s) of the individual energy program used, if signifi-
cant features new to version 4.1 are used from that module. See the Release Notes section for new fea-
tures; see documentation for the individual modules for authors.

1/30/113

Contents

Foreword . .
Introduction
Installation
Database . .
Tutorial . .

Main AMBER programs

resp . . .
prep . . .
link . . .
edit . . .
parm . . .
sander . .
gibbs . .
anal . . .
mdanal . .
carnal . .
nmode . .
nmanal . .
lmanal . .

Utility programs:

nucgen . .
ambpdb . .
protonate

gwh and pol_h

mdovrly .
mdextract
mdcorrp?2 .
intense .
spectrum .
rdis . . .
curvop . .
curvemax .

Appendices:

Namelist
Group input

Table of Contents

format

Parameter development

Charge fitting philosophy
File Formats
Release Notes

1/30/113

. 11
. 16
. 20

. 41
. 47
. 56
. 65

.155
.212
.223
.233
.253
.258
.261

.263
.267
.268
.270
.272
.274
.275
.276
.278
.279
.280
.280

.281
.283
.288
.297
.303
.312

Page 3

Contents Page 4

Foreword

Amber is the collective name for a suite of programs that allow users to carry out molecular
dynamics simulations, particularly on biomolecules. None of the individual programs carries this
name, but the various parts work reasonably well together, and provide a powerful framework for
many common calculations. The term amber is also sometimes used to refer to the empirical force
field that is implemented here. It should be recognized however, that the code and force field are sepa-
rate: several other computer packages have implemented the amber force field, and other force fields
can be implemented with the amber programs. Further, the force field is in the public domain,
whereas the codes are distributed under a license agreement.

Amber 4.1 (1995) represents a significant change from the most recent previous version, 4.0,
which was released in 1991. A detailed discussion of the changes from earlier versions is contained in
the release notes. Briefly, the major differences include:

(1) acompletely updated force field for proteins and nucleic acids;
(2) faster algorithms for simulations with water;
(3) parallelized dynamics codes;

(4) new algorithms and procedures for free energy simulations, including support for force fields
with polarization terms;

(5) Ewald sum periodicity in the dynamics program Sander;
(6) new graphical and text-based tools for building molecules and preparing input to the dynamics
programs;

(7) faster and more powerful tools for NMR spectral simulations;

(8) anew program for fitting point electrostatic charges from quantum data;

(9) anew dynamics and free energy program.
In spite of the changes, this is still recognizably Amber: it still has prep, link, edit and parm modules,
as described in the original paper, ! and both the input files and much of the code will be familiar to
those who have used earlier versions.
What to read next.

If you are installing this package or want to redimension the code, see installation section of this
manual. If you are familiar with a previous release of this software, you should read the release notes,
which describe recent changes. New users should begin with the introduction section, and will also
find the examples section useful. The directories under amber41/demo contain a number of systems
that may serve as examples. You should familiarize yourself with the files in the database directory,
amber41/dat, by looking over the database section of the manual. Although Amber may appear daunt-
ingly complex at first, it has become easier to use over the past few years, and overall is reasonably

!'P. Weiner and P.A. Kollman, J. Comput. Chem. 1981, 2, 287.

1/30/113

Foreword Page 5

straightforward once you understand the basic architecture and option choices. Hundreds of people
have learned to use Amber; don’t be easily discouraged.

1/30/113

Introduction to Amber Page 6

An Introduction to Amber 4

Understanding where to begin in Amber is primarily a problem of managing the flow of informa-
tion in this package. You first need to understand what information is needed by the energy programs
(gibbs, sander, spasms and nmode). You need to know where it comes from, and how it gets into the
form that the energy programs need. This section is meant to orient the new user, and is not a substi-
tute for the individual program documentation.

Information all the energy programs need.:

* Cartesian coordinates for each atom in the system.

* "Topology": connectivity, atom names, atom types, residue names,
and charges.

* Force field: Parameters for all of the bonds, angles,
dihedrals, and atom types in the system.

* Commands: The user specifies the procedural options and
state parameters desired.

This information is provided to the energy programs in three files: One contains the coordinates; the
second contains the topology and parameters, and called the "topology file"; the command or "input"
file is the third file. Additional files may needed for special options specified in the command file.
Files are specified in several ways, such as by command line arguments, by unit assignment in the
operating system, or by naming them in the input file.

Where is the information found?

Cartesian coordinates usually come from Xray crystallography, NMR spectroscopy, or model-
building. They should be in Brookhaven Protein Databank (PDB) format. Somewhat arbitrary carte-
sian coordinates for some or even all of the atoms can also be obtained from the database described
below. Although "raw" Amber has some rudimentary model-building features, it is not terribly useful
in this regard, and most people will probably want to use some interactive program to build initial
coordinates if they are not otherwise available. The program LEaP, distributed for the first time in this
release, provides a platform for carrying out many of these modeling tasks, but users may wish to con-
sider other programs as well.

Topology comes from the database: The database is found in the amber4i/dat directory. It is
called db94.dat. It contains topology for the standard amino acids as well as N and C-terminal
charged amino acids, DNA, and RNA. The database also contains internal coordinates for these
monomer units, but coordinate information is usually obtained from PDB files. Topology information
for other molecules (not found in the standard database) is kept in user-generated "residue files".
These are constructed in the same manner as the database using the program prep.

The basic force field parameters are also found in the amber41/dat directory; the database sec-
tion of the manual contains some detailed descriptions of various force field options. The force field
file is read as input by the PARM program. This file may be used "as is" for proteins and nucleic

1/30/113

Introduction to Amber Page 7

acids, or users may prepare their own files that contain modifications to the "standard" force fields.
Note: energies in amber are always in kcal/mol, distances in Angstroms, and angles in degrees. In the
code, calculations are often carried out in different units, but conversion of these units is always per-
formed on input and output.

How do you convert this information to the form needed by the energy programs?

Structures consisting entirely of "standard" residues (proteins, nucleic acids, water, etc.): In order to
generate the topology and coordinate files needed by the energy programs, you must run three pro-
grams in the sequence link, edit, parm. After this, energy or analysis programs may be run, using the
prmtop file (an output of the parm program) plus a coordinate file (which comes either from the parm
program or from previous runs of the energy programs.)

Structures containing non-standard residues: In addition to the above, the PREP program must be run
to generate a database for the non-standard residues.

prmtop

db94 .dat . Inkbin edtbin

parm nmode

prmcerd

becdecaed

(also handled by LEaP) prajtop
projcrd 1
nmanal,

Imanal

sander,
gibbs,
spasms

carnal anal

mdanal

Basic information flow in AMBER

1/30/113

Introduction to Amber Page 8

PREPARATORY PROGRAMS

PREP
creates or adds to a residue database from the appropriate topology/parameter information.
Required for residues not already defined in the standard AMBER database. (As supplied, the
standard AMBER database contains definitions for the 20 standard amino acids, nucleic acids
with the five standard bases, and a few other units). An alternative form of output is the "residue
file" which contains the same information as would be found in a database entry, and is simply
an alternative way of providing this information to LINK.

LINK
deals only with topology. You tell LINK the residue sequence of your molecule (even if there is
only one residue). LINK will extract the topology information for each residue from the stan-
dard AMBER database or, optionally, from the residue database files created with PREP. The
topology for each residue will be linked together to form the topology for the system. This is
written to a binary file (default name = /nkbin) that is read by EDIT.

EDIT

deals mainly with coordinates. One of the primary purposes of EDIT is to read PDB coordinates
and apply them to the system generated by LINK. Coordinates for atoms that are missing from
the PDB file (usually hydrogens) will in most cases be generated automatically by EDIT, using
the stored internal coordinates in the link binary file link.bin. Although the usual case is to read
PDB coordinates, it is not essential. Edit can act as a simple filter, converting the internal coor-
dinates in the link binary file to cartesian coordinates. EDIT is also a model-building program.
It can be used to solvate a molecule in water, to add counterions to nucleic acid systems, or to
alter coordinates in specific ways. EDIT creates a binary file (default name = edtbin) containing
both topology and cartesian coordinates. edtbin is read by PARM.

PARM

will determine which bonds, angles, dihedrals, and atom types exist in the system, and extract the
appropriate parameters for them from the force field file. PARM then writes the final coordinate
and topology files needed by ANAL, MIN, MD, and NMODE. Parm can also be used to add
simple non-varying internal coordinate restraints to the system, and to create a two-state topol-
ogy file for use in GIBBS free energy perturbation calculations. PARM outputs two files which
are used subsequently: The topology file (default name = prmtop); and the coordinate file
(default name = prmcrd).

After successfully running PARM, you are ready to begin energy calculations using ANAL,
GIBBS, SANDER, or NMODE. Coordinate files that are output from any of these programs
may be read by any other.

PROTONATE
This program will add hydrogens in appropriate locations to peptides and proteins that lack them.
It can also check the suitability of protons that are already present, and convert from one naming
system to another (e.g. from [UPAC-IUB recommendations to Brookhaven format.)

ENERGY PROGRAMS

SANDER
is the basic energy minimizer and molecular dynamics program. This program relaxes the

1/30/113

Introduction to Amber Page 9

structure by iteratively moving the atoms down the energy gradient until a sufficiently low aver-
age gradient is obtained. Structures should usually be minimized before molecular dynamics
simulation. The molecular dynamics portion generates configurations of the system by integrat-
ing Newtonian equations of motion. MD will sample more configurational space than MIN, and
will allow the structure to cross over small potential energy barriers. For complicated systems
MD is usually able to locate lower energy conformations than simple energy minimization. Con-
figurations may be saved at regular intervals during the simulation for later analysis.

More elaborate conformational searching and modeling MD studies can also be carried out using
the SANDER module. This allows a variety of constraints to be added to the basic force field,
and has been designed especially for the types of calculations involved in NMR structure refine-
ment.

GIBBS
is the Free Energy Perturbation Program. It is similar to MD, but uses the ensemble of generated
configurations to calculate the free energy difference between two similar states through either a
perturbation or thermodynamic integration approach. The two states are defined by the user in

PARM.

NMODE
is both a quasi-Newton Raphson second derivative energy minimizer and vibrational analysis
program. The NMODE minimizer is capable of obtaining extremely low energy gradients.
NMODE can calculate the normal modes of the system as well as numerous thermochemical
properties. New features for this revision include the ability to compute "Langevin modes" (nor-
mal modes including viscous coupling to a continuum solvent,) and techniques to find transitions
states as well as minima.

SOME OTHER PROGRAMS

ANAL
is for the analysis of structure and especially molecular mechanical energy of a single configura-
tion of a system. It can be run on structures both before and after modification by the energy
programs. Running ANAL on the initial configuration of your system is a good way to locate
errors in the structure that result in large energies. Anal can also be used for more sophisticated
analyses of energy and structure.

CARNAL

is a molecular dynamics analysis program. It is used for geometrical measurements, root mean
square coordinate fitting, trajectory averaging, and other structural analyses of MD trajectories.
CARNAL executes a programming language for filtering, measuring and comparing multiple
streams of coordinate files (the language contains 44 keywords and uses 10 punctuation/logical
characters). As an example, one can use it to build a trajectory in which the solute is positioned
for minimum root mean square fit of residues in the active site and only the first shell of waters is
included.

NMANAL
computes atomic fluctuations and various correlation functions from normal modes.

LMANAL
does the same things as nmanal, but for Langevin modes.

1/30/113

Introduction to Amber Page 10

NUCGEN
is a nucleic acid model-building program. It is used to generate arbitrary sequences of DNA or
RNA in a variety of conformations. Cartesian coordinates are output in PDB format.

See also the "Utility Programs" section of the manual.

1/30/113

Installation Page 11

Installation of Amber 4

These instructions describe the Unix release from UCSF. VMS-specific instructions are in the
file [amber41.src.vms]vms.notes. Separate instructions will be provided with the Oxford Molecular
CD distribution.

The AMBER 4 distribution is supplied on magnetic tape in Unix tar format or in compressed tar
file format. Load the distribution tape on your machine and read it as you would other tar tapes, or
uncompress and untar the compressed tar file. (More detailed instructions are not provided here
because of system differences.) The release consists of the directory amber41, with a number of sub-
directories. In total there are approximately 30 megabytes. You may want to check your disk quota if
applicable before reading the tape.

Once the tape has been read, cd to amber41/src. The OREADME file there describes installation
and resizing of code. Note that the most up-to-date information on operational details is always in the
OREADME files which are found throughout the distribution. Create the configuration file MACHINE
by copying the src/Machine/Machine.xxx for your machine. This file is sourced by all com-
pilation scripts, and sets environmental variables, which include system-dependent fortran compiler
directives, switches used in preprocessing the code, and the location of a system-dependent library.
The distribution tape includes configuration files for a number of different machines. When the
src/MACHINE file has been created by copying or modifying the template, then the Makeall script
can be run to make and install all the executables, and then the validation tests can be run. For exam-
ple, if you are using a Convex, the appropriate commands are:

cd amber4l/src
cp Machine/Machine.convex MACHINE
Makeall >& mk.out &

and when compilation is complete,

cd amber4l/test
Run.tests >& tst.out &

You may inspect the contents of mk.out while compilation is in progress, and tst.out while the tests are
running, but avoid writing to these files. After compilation, examine any error messages. If warnings
or errors do occur during compilation (messages about unused variables can be ignored), consult the
Compiler Warnings section below. If there are no compilation problems, run the tests and go to the
Testing section, below.

Installing by hand

If your system is not included among the configuration files supplied, or if you want to alter the
existing file or are curious how these files hide machine dependencies, see the file
amber41l/src/Machine/OREADME. If you are developing or changing the MACHINE file, you
may want to go more slowly, compiling and testing only prep first as described below.

1/30/113

Installation Page 12

Compiling and testing a single program. This section describes how to do manually what the
Makeall and Run.tests scripts automate. You can type make or make install in any src/ directory
to make the program(s) in that directory, e.g. when redimensioning arrays or otherwise modifying the
code. make clean will cause all .o files to be removed; otherwise they stay around using significant
space to conserve recompilation time.

To compile PREP (not necessary if Makeall is used):

cd amberd4l/src/prep
make install

This will compile prep. If the compilation is successful, the prep executable will be placed in
amber41/exe.

After prep has been compiled (either alone or by Makeall), cd to amber41/test/prep, and execute
Run.crown and Run.tri interactively. These will run prep using input from the demo directories, gener-
ating a number of output files. These are automatically diffed with the appropriate files in the demo
directories. In general there will be few if any diffs. Occasional differences of one in the last decimal
place may be seen due to precision differences on different machines. We have tried to minimize these
as much as possible, but maintaining data-file compatibility with previous versions of Amber pre-
cluded making all of the software full double precision. When examining the output diffs of prep and
other programs, note that a dihedral angle of 0.0 and 360.0 are actually identical.

The next thing to do is build the database, db4.dat. This is a binary direct access file of approxi-
mately half a Megabyte on 32 bit machines, or double that size on 64 bit machines like the Cray.

cd amber4l/dat
make db4

After the database is built, if you didn’t use Makeall, you need to compile the rest of the pro-
grams. (You could use Makeall now to save typing, at the expense of recompiling prep.) The source
to link, edit, parm, anal, sander, gibbs, mdanal, nmode, nucgen, and etc (utilities) will be found in
directories with those names, all under the src directory. The procedure will be the same as with prep.
You compile with make install, then go to the appropriate amber41/test/* directory and execute
command files to run the validation tests. The tests take input from and compare output with files in
the demo directories, which contain explanatory OREADME files. In some cases you will need to man-
ually compare your output with the sample outputs given there, being intelligent about deciding if dif-
ferences reflect round-off errors only, or are symptomatic of other problems. A few of the test cases
are rather lengthy (in order to be realistic) and you may wish to skip them. Clearly, if you are not
interested in normal modes, you need not compile or test the nmode program; ditto for other modules.
You may want to conserve disk space by running the Makeclean script in the src directory; this will
remove the object files in the src tree. Note that there is a test/Run.tests script that will run all
the tests. See test/0OREADME for details.

Testing

We have installed and tested AMBER 4 on a number of machines, including Cray, IBM, Sun,
Hewlett-Packard, DEC, Convex, and Silicon Graphics hardware. However, owing to time and access
limitations, not all machines for which Machine.xxx files are supplied are tested with the current code,
compilers, or operating systems. Therefore we recommend running the test suites.

The distribution contains a validation suite that can be used to help verify correctness. The
nature of molecular dynamics, and to a lesser extent molecular mechanics, is such that the course of

1/30/113

Installation Page 13

the calculation is very dependent on the order of arithmetical operations and the machine arithmetic
implementation, i.e. the method used for roundoff. Because each step of the calculation depends on
the results of the previous step, the slightest difference will eventually lead to a divergence in trajecto-
ries. As an initially identical dynamics run progresses on two different machines, the trajectories will
eventually become completely uncorrelated. Neither of them are “wrong;” they are just exploring dif-
ferent regions of phase space. The main point of this is that states at the end of long simulations are
not very useful for verifying correctness. Averages are meaningful, provided that normal statistical
fluctuations are taken into account. ‘““Different machines™ in this context means any difference in
floating point hardware, word size, or rounding modes, as well as any differences in compilers or
libraries. Differences in the order of arithmetic operations will affect roundoff behavior; (a + b) + ¢ is
not the same as a + (b + c¢). Different optimization levels will among other things affect operation
order, and may therefore affect the course of the calculations.

When comparing the output from two different machines for purposes of verification, it is very
important that identical input files be used to generate both sets of output. The validation suite uses
matched inputs and outputs in the amber41/demo/ tree, which is set to read-only to help you avoid
overwriting them with files created on your machine. Testing takes place in the amber41/test/ tree.

The single-precision setup programs prep, link, edit, and parm will occasionally show differ-
ences of +/— 1 in the last decimal place of floating point values. The double precision version of
sander should be used for verification purposes. Gibbs and nmode are only provided in full double
precision versions. All initial values reported as integers should be identical. The energies and tem-
peratures on the first cycle should be identical. The RMS and MAX gradients reported in sander are
often more precision sensitive than the energies, and may vary by 1 in the last figure on some
machines. As is the case with sander, the trajectory in a Gibbs simulation will diverge, but the result-
ing free energy should not if the simulation is run to convergence (this is not done because of the time
involved). In minimization and dynamics calculations, it is not unusual to to see small divergences in
behavior after as little as 1-200 cycles, if the two machines being compared have very different numer-
ical behavior.

Precision. In the sander program it is possible to generate either single or double precision ver-
sions of the executables. (On Cray machines, the precision is always single word, 64-bit). The double
precision version is the "default", with the executable name sander. A single precision version is also
occasionally useful, and is called spsander. The double precision version is numerically more stable,
and gives more consistent results between different machines. It can be slower than the single preci-
sion version on many machines, typically by 25-100%. The single precision minimizer is good for
quick minimizations prior to MD equilibration, but may not be capable of achieving a very low energy
gradient.

In general, compiler and optimizer errors are fairly obvious, and result in rather large changes in
the output, if you get any output at all. See test/OREADME for examples of acceptable output dif-
ferences and discussion of peculiarities of various machines.

Compiler Warnings

Some compilers (e.g. bsd £77) will generate warnings because of initializations of Hollerith data.
They will say "integer variable initialized with character datum" or something similar. These may be
ignored. If your compiler actually can not deal with Hollerith data, you are in trouble, but this is not
likely. Smart compilers may find some unreachable code in parm and mdanal, and possibly other
places. In general these are code stubs that have been hardwired off, or a check on improper parameter

1/30/113

Installation Page 14

values, and are not a problem. If any other warnings or errors are produced during compilation, they
should be taken seriously. See the section below on Assumptions.

Assumptions

This installation guide assumes the existence of a *'normal’ Unix system. This should include the
following software: /bin/csh, /lib/cpp, egrep, and sed. With the exception of subroutine putres in prep
and transf in link, and various parts of anal and mdanal, the fortran code does not assume that
sizeof(int) = sizeof(real), so it can be safely run in double precision on 32 bit machines. The code
deviates from the ANSI fortran 77 standard only in ways which are widely supported. These programs
still use Hollerith data, but do not do any bitwise manipulation of it, and limit it to 32 bit integers.
Files are assumed to be positioned at the top on an OPEN. If your compiler is pathological, you might
need to add a rewind statement in subroutine amopen. Some Amber programs (e.g. nmode) declare
scratch arrays of one type, then pass them to subroutines where they are declared and used as a differ-
ent type. It is being used only as a crude memory management technique, and does not rely on spe-
cific bit patterns in any way. If your compiler won’t buy it, you’ll have to fix it by adding the appropri-
ate equivalences in the calling routines.

Memory Requirements

The AMBER 4 programs as distributed are dimensioned for a fairly large system (about 10K
atoms), and you may want to change their dimensions to be more appropriate for the machine you are
using if you are running in a tight memory environment. See src/OREADME for information on
resizing. Some programs use local scripts called resize.csh; this script uses the stream editor sed, and
employs regular expression matching to correctly redimension the code regardless of what its dimen-
sions are currently set to, even if the same parameter has been inadvertently set to different values in
different modules. Here we describe dimensioning of sander as an example.

In src/sander/sizes.h, you will find the following parameters:

parameter (MAXINT=1300000)
parameter (MAXPR=2500000)
parameter (MAXREA=340000)
parameter (MAXHOL=200000)
parameter (MAXDUP=5000)

The actual memory requirements for a particular job can be determined from the output of SANDER
or GIBBS. An annotated example follows:

1/30/113

Installation Page 15

1. RESOURCE U S E:

Memory Use Allocated Used
Real 340000 19109 <-- minimum MAXREA
Integer 1300000 29904 <-- minimum MAXINT

Max Nonbonded Pairs: 1270096 packed 1 to a machine word

~

"NWDVAR"
Duplicated 26 dihedrals

Duplicated 94 dihedrals <-- minimum MAXDUP

NB-UPDATE: NPAIRS = 150395 HBPAIR = 2804

As is shown above, MAXREA must be at least as large as the number of Real words used. It can
be read directly off the output. MAXDUP must be at least as large as the larger of the two ’duplicated’
values given, in this case 94. The actual amount of memory controlled by MAXDUP is 10 times its
value. MAXINT is slightly more complicated, since it depends on the type of pairlist packing used.
The number of NB pair pointers packed in a native integer word, NWDVAR, is printed in the output as
shown. It will be 1 or 2 on byte-oriented machines, 1, 2, or 4 on 64 bit machines like Cray or FPS264.
The minimum value of MAXINT is determined by the sum of the static integer requirement given in
the output. For gibbs, MAXINT also includes the requirement for the pairlist, while in sander the
pairlist size is determined by MAXPR. The pairlist requirement is the total number of nonbonded
pairs, NPAIRS, divided by NWDVAR. Because the number of pairs may grow or shrink during a run,
you should include a safety factor of 5-10% extra for NPAIRS. The algorithm to determine the
MAXPR (sander) or MAXINT pairlist component is thus:

(NPAIRS/NWDVAR) * 1.1

In our Cray and FPS264 implementations, we use explicit packing functions that require the use of an
extra NATOM words of memory. For those machines, the formula is:

(NPAIRS/NWDVAR) * 1.1 + NATOM

More detailed documentation on memory use and packing configuration is found in sander/sizes.h.

NOTE: For gibbs, the variables which define memory allocation are MAXREA, MAXINT, and MAX-
CHR. MAXREA and MAXINT can be set as described above. MAXCHR allocates character stor-
age, is typically small, and scales linearly with the number of atoms. These parameters are scaled to a
single parameter, memmax.

1/30/113

The Amber database

Page 16

The database directory

There are two main types of force field file in the amber41/dat/ directory: residue descriptions for
building the PREP database, and force field files for PARM. The residue descriptions include topolo-
gies, atom types and charges and have .in extensions. The PARM force field files contains parame-
ters mapped to the atom types: mass, Van der Waals, bond, angle, torsional and hydrogen bonding
terms. These files have names matching the pattern, parm* .dat.

Files. The following files are found in the database directory amber41/dat/:

DATABASE AND DATABASE INPUT FILES:

db9%4.dat

all nuc94.in

all amino94.in
all aminoct94.in
all aminont94.in

db4.dat
uni.in
unict.in
unint.in
all.in
allct.in
allnt.in

opls uni.in
opls unict.in
opls unint.in

Residue database for the 1994 force field.
Nucleic acid input for building database.
Amino acid input for building database.
CO0O- amino acid input for database.

NH3+ amino acid input for database.

Residue database for the 1991 force field.
United atom database input.

United atom database input, COO- Amino acids.
United atom database input, NH3+ Amino acids.
All atom database input.

All atom database input, COO- Amino acids.
All atom database input, NH3+ Amino acids.

Normal OPLS residues.
OPLS COO- Amino acids.
OPLS NH3+ Amino acids.

FORCE FIELD PARAMETER FILES:

parm94.dat
parm91l.dat
opls parm.dat

1994 force field file.
1991 force field file.
OPLS force field file.

STANDARD PROGRAM INPUTS:

wat2l6.dat
nucgen.dat

OTHER PREP FILES:

nacl.in

Cube of 216 TIP4P waters, MC liquid.
Nucgen nucleic acid conformations.

Ion prep file

FORCE FIELD DOCUMENTATION:

1/30/113

The Amber database Page 17

(1)

)

OREADME Documentation for Force Field files

1994 parameters. These parameters are especially derived for solvated systems, and when used
with an appropriate 1-4 electrostatic scale factor, have been shown to perform well at modelling
the small molecules examined to date. The parameters in parm94.dat omit the hydrogen bond-
ing terms of earlier force fields.

The main files in the amber41/dat/ directory that users normally need are db94 .dat (for link)
and parm94 .dat (for parm). This is an all-atom force field; no united-atom counterpart is pro-
vided. 1-4 electrostatic interactions are scaled by 1.2 instead of 2.0; users must make this adjust-
ment in their input files for sander, gibbs etc. when using this force field.

Nucleic acid residue definitions are different - see the LINK documentation for the new residue
names. Note that old Amber PDB format files need to be massaged for use with this force field,
i.e. terminal hydrogens and phosphates are no longer separate residues, so the names and num-
bers of the residues need to be changed. (NUCGEN has been modified to accept the new names.)

Charges for the old AMBER (Weiner et al.) force field were derived using the STO-3G basis set.
The 6-31G* basis set was used for the new charges because it exaggerates the dipole moment of
most residues by 10-20%. It thus ‘“builds in” the amount of polarization which would be
expected in aqueous solution. This is necessary for carrying out condensed phase simulations
with an effective two-body force field which does not include explicit polarization.

The charge-fitting procedure is described at length in the Appendix.

The alkali ions with explicit waters adapted from the parameters of Aqvist (see 1991 notes
below) have been renamed:

Li: Li+ IP: Na+ K: K+ Rb: Rb+ Cs: Cs+

1991 parameters. These parameters may still be useful for vacuum simulations of nucleic acids
and proteins using a distance-dependent dielectric. The material in parm91.dat is the parameter
set distributed with Amber 4.0. It is derived from oldff3a/parmallhb.dat with the following
changes: The mass of all hydrogens has been reduced from 3.0 to 1.008 and the lone pair mass
has been reduced from 12.0 to 3.0. TIP3P atom type HW has been corrected to have 6-12 coeffi-
cients of zero. The bending parameters for the lone pairs around sulfur have been changed from
their uniform value of 600 kcal/mole rad**2 to 150 kcal/mole rad**2. The previous extremely
stiff force constants led to erratic and sometimes catastrophic behaviour in minimization and
dynamics. The softer force constants behave much better without changing significantly any
structural properties. (G. Seibel, Ph.D. thesis, UCSF, 1990). Finally, the STUB nonbonded set
has been copied from parmuni.dat; these sets of parameters are appropriate for united atom cal-
culations using the "larger" carbon radii referred to in the "note added in proof" of the 1984
JACS paper. If these values are used for a united atom calculation, the parameter scnb should be
set to 8.0, not its default value of 2.0.

A number of terms in the non-bonded list of parm91.dat should be noted. The non-bonded terms
for I(iodine),CU(copper) and MG(magnesium) have not been carefully calibrated, but are given
as approximate values. In the STUB set of non-bonded parameters, we have included parameters
for a large hydrated monovalent cation (IP) that represent work by Singh et al 1985 on large
hydrated counterions for DNA. Similar values are included for a hydrated anion (IM).

1/30/113

The Amber database Page 18

3)

For alkali ions with explicit waters, we have provided the latest values of Aqvist (J. Phys. Chem.,
1990, 94: 8021-8024) which are adjusted for Amber’s nonbonded atom pair combining rules to
give the same ion-OW potentials, in order to reproduce the first peak of the radial distribution for
1on-OW and the relative free energies of solvation in water of the various ions. These are
included in the standard (STDA) parameter file. The atom types are:

QC: Cs+ QK: K+ QL: Li+ OQN: Na+ QR: Rb+

The file opls_parm.dat is a parameter set appropriate for use with the AMBER/OPLS parameter
set as described by Tirado-Rives and Jorgensen. 2

1984 and 1986 parameters. Parameters from the 3.0 and 3.0 Rev A releases are in the
dat/oldff3a/ directory. These files should only be consulted if you need compatibility with that
version. They are not recommended for current use. The file oldff3a/parmuni.dat is the 1984
united atom parameter set. > The file oldff3a/parmall.dat is the 1986 all atom parameter set. *
The parmall.dat also contains the united atom parameters, and can be used to run a mixed united
atom / all atom system.

The two files in the oldff3a/ directory, parmunihb.dat and parmallhb.dat, have been modified in
the following way: Parameters for TIP3P water have been included, i.e., atom types OW and HW
for the oxygen and hydrogen, a bond length parameter, OW-HW and HW-HW, the latter to be
used when using SHAKE, i.e., rigid water molecules, as was the spirit of the TIP3P potential,
and a reasonable bond angle parameter for allowing water flexibility. The 10-12 list in these two
parm files has been set up in the following way: All the possible H-bond combinations not dis-
cussed and considered by Weiner et al. have been filled in according to the following rules: For
non-sulfur H-bonds, we have three classes: large (C=10238, D=3071), medium (7557,2385) and
small (4019,1409). For sulfur as a proton acceptor, the default values are (265720,35429) and
for a hydrogen covalently bonded to sulfur the default value is (14184,3082). For ionic H-bonds
(those involving H3 or O2), the small parameters are used, except for the sulfur proton acceptor,
where the medium is used. For NC in the nucleic acids in neutral H-bonds the large is used,
except for HS as proton donor, where the sulfur value is used. For every other neutral H-bond,
the medium value is used, except for H2--O, which corresponds to the Watson-Crick H-bonds
and for which the larger value is used.

Note: There are two possible models for handling TIP3P water - solute H-bonds: One is to set
all 10-12 parameters involving HW or OW to zero, which would be the "philosophy" inherent in
the TIP3P and OPLS models, where there are no non-bonded terms involving hydrogen bonding
hydrogens. The other is to include non-zero interactions between HW and solute atoms, consis-
tent with the Weiner ef al. results on protein-protein H-bonds. It is the latter which has been
implemented in parmunihb and parmallhb. It should be noted that preliminary molecular
mechanics calculations on N-methyl acetamide/water interactions using the two models give
very similar results for interaction energies, but the model with 10-12 parameters gives distances
in better agreement with the best available ab initio calculations. Free energy simulations using
the two models can yield significantly different results. 5 To remove the 10-12 interactions
between water and solute, set the all 10-12 parameters involving atom types HW and OW to

2WL. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 1988, 110, 1657.

3S.J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona and P. Weiner, J. Am Chem. Soc. 106, 765-784 (1984).
4S.J. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case. J. Comput. Chem.7,230-252 (1986).

5D.A. Pearlman and P.A. Kollman J. Chem. Phys 94, 4532-4545 (1991).

1/30/113

The Amber database

Page 19

zero. In addition to the use of 10-12 parameters for water-solute hydrogen bonds, these two
parameter files have a 6-12 term for HW. We have removed this in the Rev A parameter file

described below.

Finally, the oldff3a directory contains parm89a.dat, which is the force field distributed with
Amber 3A. This is identical to the current force field, with two exceptions: parm89a.dat has a
zero force constant for LP-S-LP angles; this caused some problems, and has been set to 150.0 in
the current force field. Second, the "STUB" non-bonded was not in parm89a.dat (see below).

OLD FORCE FIELD FILES (in oldff3a):

db3a.dat
makedb3a.com
parmall.dat
parmallhb.dat
parmuni.dat
parmunihb.dat
parm89a.dat

The Rev A database--has non-IUPAC names
Script to build the Rev A database.
1986 force field

1986 force field + water, more Hbonds
1984 force field

1984 force field + water, more Hbonds
Force field distributed with Amber 3A

1/30/113

Beginning examples Page 20

An Amber Tutorial

AMBER is a suite of programs for use in molecular modeling and molecular simulations. It con-
sists of a substructure database, a force field parameter file, and a variety of useful programs. Here we
give some commented sample runs to provide an overview of how things are carried out. The exam-
ples do not use the LEaP or interface programs, and only a cover a fraction of the things that it is pos-
sible to do with AMBER. The formats of the example files shown are described in detail later in the
manual, in the chapters pertaining to the programs.

Example 1. Minimization of BPTI in vacuum

Step 1. Generate some starting coordinates.

The first step is to obtain starting coordinates. We begin with the file 6pti.pdb, exactly as dis-
tributed by the Protein Data Bank and Brookhaven. This file (as with most Brookhaven files) needs
some editing before it can be used by Amber. First, alternate conformations are provided for residue
50, so we need to figure out which one we want. For this example, we choose the "A" conformation,
and manually edit the file to remove the alternate conformers. Second, coordinates are provided for a
phosphate group and a variety of water molecules. These are not needed for the calculation we are
pursuing here, so we also edit the file to remove these. Let’s call this modified file 6pti.mod.pdb.
Third, hydrogen positions are not included, so we run the Amber program protonate to provide these:

protonate -d amber4l/dat/PROTON_INFO < 6pti.mod.pdb > 6pti.H.pdb

In other situations, many different programs could be used to generate starting coordinates, but the
basic ideas are the same: somehow generate what you want in a "pdb" format, then run the result
through protonate. We recommend doing the last step even if protons are present, since protonate per-
forms a number of checks on the correctness and naming of hydrogen atoms.

Step 2. Run LINK to establish the topology.

The following script will accomplish this by creating an input file and running LINK with a prep
database:

1/30/113

Beginning examples Page 21

Running link for BPTI

cat <<eof >1nkin

bpti
DU
0 0 0 0 0
bpti
P 1 0 1 3 1

ARG 2PRO ASP PHE CYX LEU GLU PRO PRO TYR THR GLY
PRO CYX LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN
ALA LYS ALA GLY LEU CYX GLN THR PHE VAL TYR GLY
GLY CYX ARG ALA LYS ARG ASN ASN PHE LYS SER ALA
GLU ASP CYX MET ARG THR CYX GLY GLY ALA

5 558G SG
14 38sG SG
30 51sG SG

QUIT

eof

#

link -i 1lnkin -o lnkout -p $AMHOME/dat/db4.dat
/bin/rm lnkin

You should interpret the file given above using the input description for link. Basically, the first
seven lines contain operation flags, many of which are almost always the same. The next four lines
give the amino acid sequence, then come lines that establish cross-links (disulfide bonds) between
residues 5-55, 14-38 and 30-51. The UNIX AMHOME variable should be set to the location of Amber
on your system, and your PATH variable should allow the program /ink to be found. The above script
will create a text output file Inkout (which you should read), and a binary file Inkbin, which will be
used as input to the next step.

This step informs AMBER of the "topology" of the system: what all the atoms are called, what
their "types" are (needed to set up a force field), and where all the bonds are. All this information was
assembled from the sequence and the information about amino acids that is contained in the db4 .dat
file.

Step 3. Run EDIT to insert the starting coordinates.

The following script will accomplish this:

1/30/113

Beginning examples Page 22

Running edit for BPTI

cat <<eof > edtin
bpti, 5pti structure
0 0 0 0
XYZ
OMIT
XRAY
0 0 0 0 0
QUIT
eof
#
edit -i edtin -o edtout -pi 6pti.H.pdb
/bin/rm edtin

The XRAY option reads in a Brookhaven format file and compares the atoms in that file to what
Amber expects to see; when it finds matches it inserts the proper coordinates into the system, and it
reports errors when it fails to find matches. In this case, all the atoms are present, and no warning
messages should be obtained.

The output from the above script will be a text file called edrout and a binary file edtbin, which
will be used in the next step.

Step 4. Run PARM to connect the force field to the protein.
This is done by this simple script:

Running parm for BPTI

cat <<eof >prmin
name of system
BIN FOR STDA

eof
#
parm -i prmin -o prmout -f $AMHOME/dat/parm9l.dat

/bin/rm prmin

In this step, the parm program looks through the molecular information in edtbin and determines
all the types of "parameters" (force constants, bond lengths, non-bonded sizes, etc.) that are necessary
to calculate the energy of BPTI. It then searches through the parm91.dat file to find the parameters.
The program will complain if something is missing, but this is just a standard protein, and everything
is in place. The output is a text file prmout, which you should read, and data files prmtop and prmcrd
that will be used in the next step. The prmtop and prmcrd files are ascii files, so can be moved easily
from one machine to another. (It is common to run link, edit, and parm on a workstation, then transfer
the prmtop and prmcrd files to a more powerful computer for minimization and dynamics.) The prm-
top file contains all the information needed to compute the energy of a molecule, and prmcrd contains
the coordinates (in this case, the starting coordinates.) This division makes sense since minimization
or dynamics will change the coordinates but not the make-up of the molecule.

1/30/113

Beginning examples Page 23

Step 5. Perform some minimization.

Use this script:

Running minimization for BPTI

cat << eof > min.in
do 200 steps of minimization:
&cntrl
maxcyc=200, imin=1, cut=12.0, nsnb=20, idiel=0, scee=2.0, ntpr=10,
&end
eof

sander -i min.in -o 6pti.minl.out -c prmcrd -r 6pti.minl.xyz

/bin/rm min.in

This will perform minimization (imin) for 200 steps (maxcyc), using a nonbonded cutoff of 12
‘angstroms’ (cut) and a distance-dependent dielectric constant (idiel). The list of non-bonded
pairs will be updated every 20 steps (nsnb), and intermediate results will be printed every 10 steps
(ntpr). Text output will go to file 6pti.minl .out, and the final coordinates to file 6pti.mini xyz.

1/30/113

Beginning examples Page 24

Example 2. Peptide with a non-standard residue.

As an example, suppose you want to minimize an enzyme - substrate complex, and that you have
a standard PDB file with coordinates for the enzyme and substrate, which we will call 'model.pdb’.
Such a file might come from X-ray crystallography or model building. PDB files generally don’t con-
tain connectivity information, so this must be provided. In addition, each atom of the system must be
assigned the appropriate AMBER atom type so the correct force field parameters will be applied. For
the amino acid residues of the protein, this connectivity and atom type information already exists,
keyed by residue name in the AMBER database, and need not be specified. However, the substrate will
require that you input connectivity and atom type information. This is done using the program PREP.
See PREP.DOC for details. The input for prep consists of only one file, in this case subprep.in. Run-
ning PREP will give you two output files. One of the files, sub.res, is a residue topology file for your
substrate. It will have the same format as the amino acid residues in the standard data- base. The other
file, prep.out, is a list of diagnostic information.

Amber programs are usually run through the use of command files. In Unix environments, the
command file contains the name of the executable and its command-line arguments. Under VMS the
command file contains operating system commands for setting the default directory, assigning files to
fortran logical units, and running the executable program. A command file named filename.com is
executed on VMS by entering @filename. In the following examples, one will see that the control file
for each program is named filename.in, and is always assigned to unit 5. The output file containing
user information and diagnostics is called filename.out and is assigned to unit 6. The binary topology
files that are passed from module to module are called filename.bin, where filename is the name of the
module that created it. The logical unit assignment of these files varies from program to program.
Residue files from prep have names ending in ".res", pdb files have names ending in ".pdb", and coor-
dinate files created by AMBER are usually named name.crd. It is not essential that these naming con-
ventions be adhered to but it will facilitate communication with other AMBER users. (See
demo/OREADME for more naming conventions.) The following two files are the command and input
files that create the substrate residue file using PREP.

1/30/113

Beginning examples

Page 25

Running PREP

Unix:

VMS:
$ set default [yourdir.tet]
$ assign subprep.in for005

$ run [amber4l.exe]prep

$ assign prep.out for006

“amber4l/exe/prep -i subprep.in -o prep.out

Here is the "subprep.in" file; strip comments before using.

001 tcontrol for database generation
!blank card
substrate ttitle
sub.res !name of output file
SUB INT 0 lcontrol parameters - see PREP.DOC
CORRECT OMIT DU BEG
1 DuUMM DUM 0 0 0 O. 0. 0. O.
2 DUMM DUM 1 0 0 1.449 0. 0. O.
3 puMMm DUM 2 1 0 1.522 111.1 0. O.
4 N NM3211.335 116.6 180. -0.5200
5HN HE 4 3 2 1.01 119.8 0. 0.2480
6 CA CHM 4 3 2 1.449 121.9 180. 0.2270
7CB C25S 6 43 1.525 111.1 60. 0.0390
8 CG C2 S 7 6 4 1.525 109.47 180. 0.0530
9 CD C2 S 87 6 1.525 109.47 180. 0.0480
10 CE C2 s 9 8 7 1.525 109.47 180. 0.2180
11 NZ N3 3 10 9 8 1.47 109.47 180. -0.2720
12 HNZ1 H3 E 11 10 9 1.01 109.47 60. 0.3110
13 HNZ2 H3 E 11 10 9 1.01 109.47 180. 0.3110
14 HNZ3 H3 E 11 10 9 1.01 109.47 300. 0.3110
15C¢c JJ M6 4 3 1.522 111.1 180. 0.5260
16 O 02 E 15 6 4 1.229 120.5 0. -0.5000
IMPROPER
-M CA N H
CA +tM C O
CB CA N C
DONE
STOP

The next step is to link the appropriate residues from the standard database, along with the
residue file you created with PREP into a macromolecule. This is done using the program LINK. Note
that if you were only interested in the enzyme and not the substrate, you would start at this point. The

1/30/113

Beginning examples Page 26

third line of link.in tells LINK that the topological information for residue "SUB" is in the file sub.res
(the "standard" residues are retrieved from the prep database file specified with the ‘—p’ argument).
The residues of the enzyme are listed sequentially in the order that they are to be bonded. The sub-
strate residue is put at the end, separated by the spacer residue "***" indicating that it is not covalently
attached. Alternatively it could be specified as a separate molecule. After the residue sequence, disul-
fide crosslinks are input. Any desired covalent attachment can be input as a crosslink. See
LINK.DOC for details. Running LINK again produces two files: link.bin, the molecular topology file,
and link.out, which contains diagnostic information.

Running LINK

Unix:
“amber4l/exe/link -i link.in -o link.out -1 link.bin -p db4.dat

VMS:

$ SET DEFAULT [YOURDIR.TET]

$ ASSIGN [AMBER.DAT]DB4.DAT FOR0O01

$ ASSIGN LINK.IN FORO005

$ ASSIGN LINK.OUT FOR006

$ ASSIGN LINK.BIN FORO010

$ RUN [AMBER41.EXE]LINK

LINK.IN:

TACK’S PROTEIN Ititle
!blank line

SUB Osub.res tfilename for residue SUB
!blank card

DU !symbol for dummy atoms

0 0 0 0 O !print controls
tacks protein !subtitle for first molecule
P 1 0 1 3 1 !control parameters for first molecule

ASP 1SER CYX GLU ALA ILE ILE HIP GLU LEU HID SER
ARG HID PRO GLY ASP PHE GLY ALA ASP ALA GLN GLY

ALA MET ASN LYS ALA CYX GLU SER *** SUB !residue list
!blank card
3 30SG SG 0 !crosslink info
!blank card
QUIT lexit control

The binary file link.bin contains your system, but at this point it lacks the correct atomic coordi-
nates. It does contain the internal coordinates for each residue, but the residues are linked with arbi-
trary dihedral angles. The file also contains some pseudo atoms called "dummy" atoms. They are
there to define the space axes for the internal coordinate system and must be removed. The addition of
correct coordinates and removal of dummy atoms is accomplished with the program EDIT. Input for
EDIT consists of a small control file, edit.in; the topology file from LINK, link.bin; and your PDB file.
Two files are output: edit.bin, the molecular topology file (now with correct coordinates and dummy
atoms removed), and edit.out containing user information and diagnostics. A look at edit.out generally
reveals some frightening diagnostics stating that input for some atoms was not found. What this actu-
ally means is that the PDB file was missing some atoms present in the database residues, or had some

1/30/113

Beginning examples Page 27

extra atoms not present in the database (sometimes these are the same atoms, with different names). If
atoms in the PDB file are missing, edit will add them using the stored internal coordinates of the
residues. In the event that this can’t be done (notably for the very first atoms in a molecule), the correct
orientation of the atoms can be specified on edit.in using the "ABC" option of EDIT. Extra atoms in
the PDB file are ignored. Some important notes: EDIT expects the residue sequence of the pdb file to
match the link input file. If any residues are missing or extra ones are present, the program will stop
with an error message. The ordering of atoms within a residue does not matter, nor do the atom
sequence numbers, however, all atom records for a given residue should have the same residue
sequence number. Since Rev A, EDIT reads real PDB files, unlike earlier versions of EDIT.

Running EDIT

Unix:
“amber4l/exe/edit -i edit.in -o edit.out -1 link.bin
-e edit.bin -pi model.pdb -po edit.pdb

VMS:

$ set default [yourdir.tet]

$ assign edit.in for005

$ assign edit.out for006

$ assign link.bin for010

$ assign edit.bin for012

$ assign model.pdb for015

$ run [amberd4l.exe]edit

EDIT.IN:

tacks protein title
0 0 0 O !print controls

XYZ !select xyz option

OMIT !xyz input - omit dummy atoms

XRAY !select xray option
0 0 0 O !xray input

ABC !select abc option

1 0 tabc input

1 1.01 109.5 60.0 2 5 6 tabc input
3 1.01 109.5 180.0 2 5 6 !abc input
4 1.01 109.5 300.0 2 5 6 !abc input

!blank card
QUT !terminate abc option
QUIT !terminate edit

All that remains to be done is add force field parameters to the molecular topology file, and you
will be ready to run either molecular mechanics or molecular dynamics. Force field parameters are
added with the program PARM. Input for PARM consists of a control file; parm.in, a parameter file;
parm91.dat, and the topology file from EDIT; edit.bin. parm91.dat is part of the AMBER 4 distribu-
tion. Output from PARM consists of the completed topology file, parm.top, a coordinate file,
parm.crd, and the diagnostics file parm.out. The finished topology and coordinate files can be written
either in binary form or formatted form. In general we now use only the formatted form for all files,
so they can be used on various machines regardless of the underlying representation of data. It is

1/30/113

Beginning examples Page 28

important to look at parm.out to make sure that all the needed parameters were found in parm91 .dat. If
you are only working with amino acids, nucleic acids, or water, they should all be there. However, it is
very easy to construct a molecule for which parameters do not exist in parm91.dat. In that event you
will have to create some on your own. Often parameters for similar bonding situations can be found in
parm91.dat, and simply duplicated in that file with the appropriate atom types. Otherwise see Hopfin-
ger and Pearlstein, J. Comp. Chem., 5, p486, 1985. This article tells how to generate any needed force
field parameters for general molecular mechanics use.

Running PARM

Unix:

“amber4l/exe/parm -i parm.in -o parm.out
-e edit.bin -f Tamber4l/dat/parm9l.dat
-c parm.crd -p parm.top

VMS:

SET DEFAULT [YOURDIR.TET]

ASSIGN PARM.IN FORO0O05

ASSIGN PARM.OUT FORO006

ASSIGN [AMBER41.DAT]PARM91.DAT FORO010
ASSIGN PARM.TOP FORO012

ASSIGN EDIT.BIN FORO15

ASSIGN PARM.CRD FOR018

RUN [AMBER41.EXE]PARM

”v» »n »n v v »n N n

PARM.IN:

tack helix ltitle

BIN FOR STDA !format controls + nonbon param set name
0 0 O !print flags
1 1 1 !print flags

Now you are finally ready to run SANDER, the molecular mechanics/dynamics module. In
honor of its predecessor, minmd, and because the name is more self-explanatory, the input and output
files are here named minmd.xxx rather than sander.xxx. Input for this program consists of a control
file, minmd.in, the topology file from PARM; parm.top, and the coordinate file from PARM; parm.crd.
Output from SANDER consists of the final coordinates, minmd.crd, and a record of the molecular
mechanical energies of the system as the minimization/dynamics proceeds, minmd.out. Output from a
dynamics run may optionally include files containing the dynamics trajectory and velocities of all the
atoms of the system over the course of the simulation.

SANDER.COM: This file will typically be submitted to a batch queue, or run in the background at
reduced priority.

1/30/113

Beginning examples

Page 29

Running SANDER

Unix:
“amber4l/exe/sander -i minmd.in -o minmd.out -p parm.top
-c parm.crd -r minmd.crd -inf minmd.inf

VMS:

SET DEFAULT [YOURDIR.TET]
ASS MINMD.IN FORO0O05

ASS MINMD.OUT FORO006

ASS PARM.BIN FORO020

ASS COORD.DAT FORO021

ASS COORD.OUT FORO033

RUN [AMBER41.EXE]SANDER.EXE

©v n »n v »n - n

MINMD.IN:
This file uses the new namelist style of input.

Tack Helix: 500 steps min, constant dielectric
&cntrl imin = 1, maxcyc = 500, nrun = 0 nsnb = 50,
idiel = 1, cut = 8.0, scee = 2.0,

&end

1/30/113

Beginning examples Page 30

Example 3. A more complicated protein example.

This section works through in some detail setting up a protein simulation in AMBER. The

example is for plastocyanin in water, and contains a number of things that experienced AMBER users
know how to do, but which may be far from obvious for others. In particular, there are a couple of
items that go beyond a simple protein:

ey

()

3)

“)

Plastocyanin contains a metal ion bound to four amino acids, and I also want to modify a
methionine residue that is bound to the copper in such a way that it has a different type of sul-
fur than is found in the standard database.

The Brookhaven crystallographic file (1PLC) contains crystallographic waters, which I want to
keep. Only the oxygen positions are provided, so I will need to try to figure out where to put
protons.

Somewhat unusually, this PDB file has proton positions for the protein, which I would like to
keep. However, Brookhaven uses proton names that are different than what NMR spectro-
scopists use, and I would like to be able to use the latter to make easy contact with NMR
results.

Using the most probable ionization states of the protein (at neutral pH) results in a protein with
a net charge of -8, so I would like to include mobile counterions in the solution to create an
overall neutral system.

This will be a lot of work, but it’s infinitely easier now in AMBER than it used to be.

Step 1: Make database file for the modified residues.

For plastocyanin, I will define two new types of residues: HIC, which will be a histidine coupled

to a copper ion, and which will take the place of HIS 37 in the "real" sequence, and MEM, which is a
modified methionine where the sulfur atom is of type "SM" rather than type "S". "SM" is a type I
made up, and will use to create special force field parameters for MET 94, which is bonded to the cop-
per ion with a fairly long bond.

Here are the input files for these two residues:

1/30/113

Beginning examples

Page 31

hicu_all.i

n

HIC INT 1
CORRECT OMIT DU BEG
0.00000
1 DUMM DU M 0o -1 -2
2 DUMM DU M 1 0 -1
3 DUMM DU M 2 1 0
4 N N M 3 2 1
5 H H E 4 3 2
6 CA CcT M 4 3 2
7 HA H1 E 6 4 3
8 CB CT 3 6 4 3
9 HB2 HC E 8 6 4
10 HB3 HC E 8 6 4
11 CG CcC S 8 6 4
12 ND1 NB B 11 8 6
13 Cu Cu E 12 11 8
14 CE1l CR B 12 11 8
15 HE1 H5 E 14 12 11
16 NE2 NA B 14 12 11
17 HE2 H E 16 14 12
18 CD2 Cw S 16 14 12
19 HD2 H4 E 18 16 14
20 C C M 6 4 3
21 o] o] E 20 6 4
CHARGE
-0.41570 0.27190 -0.05810 0.13600
0.03670 0.03670 0.18680 -0.54320
0.16350 0.14350 -0.27950 0.33390
0.18620 0.59730 -0.56790
LOOP CLOSING EXPLICIT
CG CD2
IMPROPER
-M CA N HN
CA +M Cc 0]
CE1l CD2 NE2 HE2
CG NE2 CD2 HD2
ND1 NE2 CE1 HE1l
ND1 CD2 CG CB
DONE
STOP

HISTIDINE epsilon-H, with copper attached to N-delta
hicu_all.db4

.0000
.4490
.5220
.3350
.0100
.4490
.0900
.5250
.0900
.0900
.5100
.3900
.05

.3200
.0900
.3100
.0100
.3600
.0900
.5220
.2290

HFRPRPRRRRPRPENRPRPRPRERRPPRERRRRERO

-0.00740
1.00000
-0.22070

111

.0000
.0000
111.
116.
119.
121.
109.
.1000
109.
109.
115.
122.
109.
108.
120.
109.
126.
110.
120.
111.
120.

1000
6000
8000
9000
5000

5000
5000
0000
0000

0000
0000
0000
0000
0000
0000
1000
5000

.0000
.0000
.0000
.0000
.0000

0000
0000

.0000
.0000

0000
0000
0000

0000
0000

.0000
.0000
.0000

0000
0000

.0000

1/30/113

Beginning examples Page 32

met.in
0 0 2
METHIONINE, with SM atom type for the sulfur
met.db4
MEM INT 1
CORR OMIT DU BEG
0.00000
1 DUMM DU M 0o -1 -2 0.000 0.000 0.000 0.00000
2 DUMM DU M 1 0o -1 1.449 0.000 0.000 0.00000
3 DUMM DU M 2 1 0 1.522 111.100 0.000 0.00000
4 N N M 3 2 1 1.335 116.600 180.000 -0.41570
5 H H E 4 3 2 1.010 119.800 0.000 0.27190
6 CA CT M 4 3 2 1.449 121.900 180.000 -0.02370
7 HA H1 E 6 4 3 1.090 109.500 300.000 0.08800
8 CB CT 3 6 4 3 1.525 111.100 60.000 0.03420
9 HB2 HC E 8 6 4 1.090 109.500 300.000 0.02410
10 HB3 HC E 8 6 4 1.090 109.500 60.000 0.02410
11 cCG CT 3 8 6 4 1.525 109.470 180.000 0.00180
12 HG2 H1 E 11 8 6 1.090 109.500 300.000 0.04400
13 HG3 H1 E 11 8 6 1.090 109.500 60.000 0.04400
14 sSD SM S 11 8 6 1.810 110.000 180.000 -0.27370
15 CE CT 3 14 11 8 1.780 100.000 180.000 -0.05360
16 HE1l H1 E 15 14 11 1.090 109.500 60.000 0.06840
17 HE2 H1 E 15 14 11 1.090 109.500 180.000 0.06840
18 HE3 H1 E 15 14 11 1.090 109.500 300.000 0.06840
19 C C M 6 4 3 1.522 111.100 180.000 0.59730
20 O (0] E 19 6 4 1.229 120.500 0.000 -0.56790
IMPROPER
-M CA N H
CA +M C (e}
DONE
STOP

I made met.in just by copying the relevant portions of the methionine entry from all_amino94.in in the
database directory, changing the atom type of the sulfur, and adding appropriate first and last lines.
Similar things were done for the histidine residue, except that I added a copper atom bonded to NDI1.
It is a good idea to read these files alongside the PREP documentation.

Then, these files were used as input to PREP:

prep -i hicu all.in -o hicu all.prpout
prep -i met.in -o met.prpout

1/30/113

Beginning examples Page 33

These input and output files may be found in the %% % directory.
Step 2: Do some editing of the PDB file.

(1)

2)

3)

Several small changes need to be made to the input PDB file to make it work with Amber:

First, we need to split of the HOH water residues into a separate file, say watpdb, and remove
them from the main PDB file (call this modified file /plc.nowat.pdb). Further, the remarks in
this pdb file indicate that waters #183 and #187 are a disordered pair, and should not both be
present. So, I arbitrarily choose to delete #187 and to keep #183. [Note that AMBER by
default will also choose only the principal position for disordered side chains, i.e. the "A" con-
formation if there is more than one. But this is done automatically, and does not require edit-
ing. If you want to start a simulation from the "B" conformation of a side chain, you need to
manually edit the PDB file to remove the "A" conformation and blank-out the alternate confor-
mation flag for the atoms you want AMBER to use.] For some reason, these two disordered
waters were both put in the PDB file, and not assigned as alternate conformers. Generally
speaking, you have to look carefully at a Brookhaven file before really using it.

(An alternative is to simply strip out the "crystallographic" waters and not use them at all.
This is most appropriate if you are planning an MD or free energy simulation that will go
through an extensive equilibration period before the "real" simulation begins. One goal of
equilibration is to minimize dependence upon the starting conditions, and certainly the individ-
ual water molecules will move around a lot during any decent equilibration. At that point, the
fact that you went to some trouble to originally place the waters in some nice positions may be
irrelevant. Or maybe not; opinions differ on this matter, which is why we try to provide flexi-
ble tools in Amber.)

Next, we need to work on the proton names in the main protein file. Most Brookhaven crystal-
lographic files do not have protons, so the protonate program is used to add them. Even here,
we want to change the names Brookhaven uses to NMR conventions as described above, so we
will still use protonate. This program also does sanity and chirality checking, so it is generally
a good idea to use it prior to putting any pdb file into Amber.

At this point, you need to decide about protonation states of various residues, especially his-
tidines. This is pretty easy for plastocyanin, since the two histidine side chains are both bound
to copper through the ND1 nitrogen. So we initially change both HIS residues to HIE, in order
to tell AMBER to put the protons on the NE2 nitrogen. (Note that in many other proteins, it
will often be reasonable to assign surface-accessible histidines to be protonated, residue name
HIP.) Now run:

(protonate -k < lplc.nowat.pdb > lplc.nowat.H.pdb) >& protonate.out
The -k option changes the names but "keeps" the positions of the protons in the input pdb file.

Next, I moved the copper ATOM card from the end of the pdb file into residue 37, changing its
residue name to "HIC" and its residue number to 37. I also changed the residue name for the
rest of atoms of residue 37 from "HIS" to "HIC", and changed the residue name for residue 92

1/30/113

Beginning examples

from "MET" to "MEM" as described above.
Step 3: Create AMBER files for the basic protein.

Page 34

AMBER gets the sequence information, plus information about how the copper ion is bound to

its ligands, from the input files to LINK:

Inkin.nowat

PLASTOCYANIN

HIC 2hicu_all.db4
MEM 2met.db4

DU

0 0 0 0 0
Plastocyanin (poplar)
P 1 0 1 3 1
ILE 2ASP VAL LEU LEU GLY ALA ASP ASP
SER GLU PHE SER ILE SER PRO GLY GLU
ALA GLY PHE PRO HIC ASN ILE VAL PHE
GLY VAL ASP ALA SER LYS ILE SER MET
ALA LYS GLY GLU THR PHE GLU VAL ALA
SER PHE TYR CYX SER PRO HIE GLN GLY
THR VAL ASN

37 87CU ND1 0

37 84CU sSG 0

37 92CU sD 0
QUIT

GLY
LYS
ASP
SER
LEU
ALA

SER
ILE
GLU
GLU
SER
GLY

LEU
VAL
ASP
GLU
ASN
MEM

ALA
PHE
SER
ASP
LYS
VAL

PHE
LYS
ILE
LEU
GLY
GLY

VAL
ASN
PRO
LEU
GLU
LYS

PRO
ASN
SER
ASN
TYR
VAL

Again, it is a good idea to compare this input to the descriptions in the manual. Note the the copper
atom is already bonded to the ND1 atom of HIS37, and that crosslink commands to used to add three
other ligands to it. The "***" in the waters is a special residue name used to indicate that no chemical

bond between residues is to be added. Then run:

link -i lnkin.nowat -o lnkout.nowat -p /home/case/dat/db94.dat

where you must substitute the location of db94.dat on your machine for the file listed above. Next cre-

ate a standard input for for edit:

edtin.nowat

poplar plastocyanin
0 0 0 0
XYZ
OMIT
XRAY
0 0 0 0 0
QUIT

1/30/113

Beginning examples Page 35

and run:
edit -i edtin.nowat -o edtout.nowat -pi lplc.nowat.H.pdb

and look carefully at the output file. It is very common to find warning messages at this point, and
they need to be cleared up, usually by minor re-editing of the input PDB file. Finally, create a standard
input file for parm:

prmin

standard parm using parm94.dat
BIN FOR MOD4
0 0 0
1

We also need to make modifications to the AMBER force field to recognize the copper atom and the
modified methionine residue. The best way to do this is not to edit the main force field file, but to cre-
ate a frcmod file with changes specific to each project. Here is the one I created for plastocyanin:

1/30/113

Beginning examples

Page 36

fremod.pcy

#
#
refinements,
#
MASS
SM 32.06
BOND
NB-CU 70.000 2
CU-S 70.000 2
CU-SM 70.000 2
CT-SM 222.000
LP-SM 600.000
ANGLE
CU-NB-CV 50.000
CU-NB-CR 50.000
CU-NB-CP 50.000
CU-NB-CC 50.000
CU-SM-CT 50.000
CU-S -CT 50.000
CU-S -C2 50.000
CU-S -C3 50.000
CU-SM-LP 00.000
CU-S -LP 00.000
NB-CU-NB 10.000
NB-CU-SM 10.000
NB-CU-S 10.000
SM-CU-S 10.000
CU-SM-CT 50.000
CT-CT-SM 50.000
HC-CT-SM 35.000
H1-CT-SM 35.000
CT-SM-CT 62.000
CT-SM-LP 600.000
LP-SM-LP 600.000
DIHE
X -NB-CU-X 1
X -CU-SM-X 1
X -CU-s -X 1
X -CT-SM-X 3
NONBON

CuU 2.20

SM 2.00

in which methionine S is type SM

.05000
.10000
.90000

1.81000
0.67900

126.
126.
126.
126.
120.
120.
120.
120.

96.

96.
110.
110.
110.
110.
120.
114.
109.
109.

98.

96.
160.

.00
.00
.00
.00

= O O O

0.200
0.200

700
700
700
700
000
000
000
000
700
700
000
000
000
000
000
700
500
500
900
700
000

0
0
0
0

kludge by JRS

kludge by JRS

for pcy
met(aa)

JRS estimate
JRS estimate
JRS estimate
JRS estimate
JRS estimate
JRS estimate
JRS estimate
JRS estimate
dac estimate
dac estimate
dac estimate
dac estimate
dac estimate
dac estimate
JRS estimate
met(aa)

MET (OL)

180.000
180.000
180.000

0.000

w w w w

this file has force constants needed for plastocyanin

.000
.000
.000
.000

1/30/113

Beginning examples Page 37

Crating a frcmod file is a bit of an art, since one is often faced with unknown parameters (such as force
constants from copper to its ligands in the above example.) In this tutorial, I am just going over the
mechanics of running AMBER, and make no claims about the validity or appropriateness of the above
parameters. There is a big literature on parameter estimation, and users are encouraged to consult this
when faced with unusal chemical environments.

Now, run parm with the above inputs:

parm -i prmin -o prmout.nowat -f /home/case/dat/parm94.dat
-f frcmod.pcy

You might also create a pdb file at this point with the new coordinates:
ambpdb -wrap < prmcrd > lplc.nowat.amber.pdb

The -wrap flag will make the output proton names more like those Brookhaven uses. Leave this flag
off if you want the names in the output PDB file to be the internal AMBER proton names.

Step 4: Work on positioning counterions and crystallographic waters

The question of how or whether to include solvent counterions in protein and DNA simulations
is a difficult one. Generally speaking, DNA simulations have often used counterions and many exist-
ing protein simulations have not. In terms just of "mechanics" and not science, AMBER will suggest
counterion positions for you, by using the cion program:

(cion -elstat < lplc.nowat.amber.pdb > cion.pdb) >& cion.out

This routine places counterions at the most favorable electrostatic positions, until it achieves a neutral
overall system. Note, however, that this may end up corresponding to a fairly high salt concentration,
and may not be at all what you want. At this stage, the user’s judgement is required, which is why a
lot of this stuff is not yet automated. This tutorial can’t go over all of the pros and cons of various
choices, and in any event, different users will have different preferences. Let’s suppose that you
choose a few chloride counterions to add to the simulation. The positions that cion suggests would get
added to the bottom of the Iplc.nowat.amberpdb file we created above. Then, you need to run LINK
again, using an input something like the following:

1/30/113

Beginning examples Page 38
input to link with counterions
PLASTOCYANIN
HIC 2hicu_all.db4
MEM 2met .db4
DU
0 0 0 0
Plastocyanin (poplar)
P 1 0 1 3
ILE 2ASP VAL LEU LEU GLY ALA ASP ASP GLY SER LEU ALA PHE VAL PRO
SER GLU PHE SER ILE SER PRO GLY GLU LYS ILE VAL PHE LYS ASN ASN
ALA GLY PHE PRO HIC ASN ILE VAL PHE ASP GLU ASP SER ILE PRO SER
GLY VAL ASP ALA SER LYS ILE SER MET SER GLU GLU ASP LEU LEU ASN
ALA LYS GLY GLU THR PHE GLU VAL ALA LEU SER ASN LYS GLY GLU TYR
SER PHE TYR CYX SER PRO HIE GLN GLY ALA GLY MEM VAL GLY LYS VAL
THR VAL ASN
37 87CU ND1 0
37 84CU SG 0
37 92CU SD 0
A few chloride counterions
P 0 0 1 3
CL 2*** CL * % % CL * % % CL * % % CL * % % CL * % % CL * % % CL * % %
CL 2
QUIT

Note the use of the "***" residue to indicate that the counterions are not chemically bonded to

each other.
Step 5: Run EDIT and PARM to add a box of waters around the system.

Actually, the hard part is mostly done. At this point we might run edit to read in the PDB file
that has counterions, and to add a box of water molecules around the solute. Here is a sample input

file for that:

1/30/113

Beginning examples

Page 39

Input to edit to add a box of waters
poplar plastocyanin
0 0 0 0
XYZ
OMIT
XRAY
0 0 0 0 0
BOX
HW OW 4
0.417 2.8 2.3
14.0 14.0 14.0
QUIT

This creates a pretty big box, with a minimum of 14 A between the protein and the edge of the
box; most simulations would use a smaller value to save on computer time. With counterions, though,

you need to be sure that there is enough room for them to move around if they need to.

Running PARM with counterions and water is no different than without, so at this point you need
to repeat the PARM step outlined above. If everything went well, you will have a parameter file
(default name is prmtop), and a coordinate file (default name prmcrd). These would be used to start an
equilibration procedure, followed by an MD or free energy simulation. Future revisions to this tutorial

will outline some of the details of that step.

1/30/113

Beginning examples Page 40

A word about FORTRAN....

Amber is written entirely in FORTRAN. It is not absolutely necessary that one know FORTRAN
to run AMBER, but it is important to know a little bit about fortran format statements in order to
understand the documentation and prepare your input files correctly. Each line (often called a "card")
of input has a FORMAT statement associated with it. The format statement will contain a number of
terms separated by commas. Each term represents a value that is being read, and dictates where on the
line the characters that comprise that value should lie, and how they will be interpreted. The following
terms will be seen:

NAn Alphabetic format. N times n characters will be read as a literal string. If N is missing it is equal
to one. A’ alone means as many characters as the variable being read will hold. An important
thing to remember is that character data should be left justified. If a residue name is being read in
A4 format, it should appear on the input as GLY(sp) and NOT as (sp)GLY. As a general rule, all
character input in AMBER should be upper case (except in titles).

NIn Integer format. N Integers (no decimal pt) occurring in fields n characters wide will be read.
These numbers must be RIGHT justified. In some BUT NOT ALL cases a blank will be inter-
preted as a zero when read in integer format. To be on the safe side, always include zeroes in
your input explicitly.

NFm.n
Floating point (real) format. N real numbers (with decimal pt) will be read in fields m characters
wide, with n of those characters allocated to the part of the number to the right of the decimal
point. It is only necessary to have these numbers within the boundaries of the m character width
field. They do not need to be justified.

NX Spaces. N characters of any kind may be present. They will be ignored.
The following example may be helpful:
FORMAT (I5,2A4,4X,3F8.3)

OALA GLY 12.345 12.345 12.345
IITTTaaaaAAAAXXXXFFFFFFFFEfffffffFFFFFFFF
12345678901234567890123456789012345678901

Note that the integer field is right justified, and the two alpha fields are left justified in uppercase.
You will occasionally see constructs such as the following in the documentation:
(KVAR(I), I = 1, NVAR)

FORMAT (16I5)

This means that an array (KVAR(1), KVAR(2), ... KVAR(NVAR)) is being read in I5 (or any other)
format. You can have up to but not more than 16 values on a line, in whatever format is specified. It is
not necessary to use up all the fields in the format statement if less than that number of variables is
being read. If NVAR is greater than 16, the input is continued on the next line in the same format.

Some of the routines allow the use of NAMELIST-type input. A description of this more intu-
itive input scheme is given later and in an Appendix.

1/30/113

RESP module

Usage:

Page 41

RESP

resp [-0O] -i input -o output -p punch -g gin -t gout
-e espot -w gwts -s esout

—O Overwrite output files if they exist.

RESP (Restrained ElectroStatic Potential) fits the quantum mechanically calculated electrostatic
potential at molecular surfaces using an atom-centered point charge model. This method was devel-
oped by Christopher Bayly. © 7 See Appendix D for background on charge fitting.

file
name

input
output
punch
gin
gout
espot
qwts
esout

a/p =

Input included in the

-1st

flag fortran

unit
-i 5
-0 6
-p 7
-q 3
-t 19
-e 10
-w 4
-s 20

always produced

line-

TITLE

input: a character string

required
a/p
a/p
optional
a/p
required
optional
optional

"-i" file

purpose

input options

output of results

synopsis of results
replacement charges

ouput of current charges

input of ESP’s and coordinates
input of new weight factors
generated esp values for new
charges

6 ““A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Determining Atom-Centered Charges: The RE-
SP Model,” C.I. Bayly, P. Cieplak, W.D. Cornell, and P.A. Kollman, J. Phys. Chem. 1993, 97, 10269.

7 «Application of RESP Charges to Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation,”
W.D. Cornell, P. Cieplak, C.I. Bayly, and P.A. Kollman, J. Am. Chem. Soc.1993, 115, 9620.

1/30/113

RESP module Page 42

-2nd section-

Begin with namelist " &cntrl"
(see example at end)

inopt = 0 normal run
= 1 cycle through a list of different qwt
read from -w unit

ioutopt = normal run
= 1 write restart info of new esp etc to
unit -es (esout unit)
igopt = 1 reset all initial charges to zero (default)

= 2 read in new initial charges from -q (gwt)
(normally not used:
= 3 read in new initial charges from -g (gwt)

and perform averaging of those new
initial charges according to ivary values

nmol = n the number of molecules in a multiple molecule
fit (default 1)
ihfree = 0 all atoms are restrained
= 1 hydrogens not restrained (default)
irstrnt = 0 harmonic restraints (old style)
1 hyperbolic restraint to charge of zero (default)
= 2 only analysis of input charges; no
charge fitting is carried out
iunits = 0 atom coordinates in angstroms (default)
= 1 " " " bohrs
qwt = normally use 0.0005 for Stage 1 (default)

" " 0.001 for Stage 2

end namelist " &cntrl" with " &end"

-3rd "line"-

wtmol relative weight for the molecule if
multiple molecule fit (1.0 otherwise)

input: real number

1/30/113

RESP module Page 43

-4th "line"-
subtitle for molecule
input: a character string
-5th "line"-
charge, iuniq (the number of atoms)
input: 2I5
-6th "area"-
one line for each atom
input: 2I5

Atomic number, ivary

ivary
= 0 charge varied independently of previous
centers
= n current charge fitted together with
center "n"
= -99 charge frozen at "initial charge" wvalue
typically read in unit "gin"
-7th- "area"
charge constraints... blank line if no constraints
input: I5,F10.5

ngrp = number of centers in the group associated with this
constraint (i.e. the number of centers to be read in)

grpchg(i) = charge to which the associated group of atoms
(given on the next card) is to be constrained

-7.1th-
imol, iatom
format (16I5)

the list (ngrp long) of the atom indices of those atoms to be

1/30/113

RESP module

Page 44

constrained to the charge specified on the previous line.

*blank to end

-8th "area"-

intermolecular charge constraints
same format as indvidual molecule constraints

*blank to end

-9th "area"-

Multiple molecule constraints
same format as -7,8-

*blank to end

Other file formats

-q input of replacement charges if requested
(note: same format as produced by -q)

input: 8£10.6

-w input of new weight factors if requested

input: i5 ngwt number of new weights to cycle thru

input: £10.5 new weights
ngwt lines

-e input of ESP’s and coordinates
-1st line-
n_atoms n_esp points

input: 2i5

1/30/113

RESP module

-2nd- 2->natoms+1 lines-

atom coordinates
X,y¥,2 (in Bohrs)

input 17x,3el6.7

-3rd natoms+2->natoms+2+nesp lines-

potential and coordinate
apot,x,y,2 (in a.u.,bohrs)

input 1X,4El6.7

Page 45

sample input for a single water molecule force H’'s equivalent:

NOTE: the blanks before &cntrl and &end are necessary

test for water

&cntrl nmol=1
&end

1.0
water
0

N O O W

8
1
1

sample input for methanol two configurations;

hold methyls equal:

test for meoh
&cntrl nmol=2

&end

1.0

m3oh trans
0 6
6 0
8 0
1 0
1 0

1/30/113

RESP module Page 46

meoh cis

= = = = 00 OO
O OO0 oo oo

= 0 = N
=
N
=

1/30/113

PREP module Page 47

PREP

Usage:

prep [-0] -i input -o output -p params

—O Overwrite output files if they exist.

New to 4.1: atom types "4","5" and "6" to facilitate setting up special residues for GIBBS.

The purpose of this module is to add new residues to the standard AMBER residue database,
create new databases, or to create new residues as individual LINK-readable files. It is not necessary
to run PREP if all residues needed for a simulation are already present in the standard AMBER
database, described in the LINK documentation. A residue is the basic molecular unit of the AMBER
simulation package. It is typically an amino acid or nucleic acid unit, but could be a prosthetic group,
a small molecule, or a single ion.

Tree Structure: The geometry of the residue is described by a "tree" structure to enable the
LINK module to successfully connect it to a larger structure. The atoms in a residue are classified
into five topological types: "Main", "Side", "Branch", "3", "4", "5" "6" and "End" types. They are
denoted as M, S, B, 3 4 5 6 and E respectively.

Main atoms describe the principal "path" through the residue, starting at the connection to the
previous residue and ending at the connection to the next residue. The LINK module will connect
the last main atom of a residue to the first main atom of the next residue in the molecule. If there is
only one residue in a molecule, the main atoms are typically the longest continuous non-intersecting
chain. The main type atoms can have 1,2, 3, or 4 atoms connected to them.

Any atom that is not a main atom is described by one of the other topological types: "E", "S",
"B","3","4" "5" or "6". An "E" atom has only one connection to other atoms, thus is a "dead end"
for any branch from any other atom type. An "S" atom must have a total of two connections to other
atoms, a "B" atom must have a total of three connections, and a "3" atom actually has a total of four
connections; the same applies for "4" "5" and "6". The topological types described here can only
describe acyclic systems. In order to describe the topology of cyclic systems, explicit loop closing
bonds are specified using the LOOP command described below. Loop closing bonds are not counted
as connections when assigning M, E, S, B, 3,4, 5, 6 topological types. If an atom has more than
four connections, it is not defined in the present tree structure.

Dummy atoms: PREP requires that three dummy atoms precede the actual atoms of the residue.
These atoms are simply used to define the space axes for the residue. The three dummy atoms must
be given the topological type "M", and they must be assigned a force field atom type that defines them
as dummy atoms. The symbol "DU" is recommended to be consistent with the standard database.
It is necessary to have the three initial dummy atoms whether internal or cartesian coordinates
are given as input.

It is important for the proper functioning of the EDIT module that dummy atoms be left in the
first residue of the system, but that they be removed in any subsequent residues. Therefore you

1/30/113

PREP module Page 48

should specify the "NOMIT" flag for any initial residue, and the "OMIT" flag for all others. In typical
use of AMBER, peptide systems are either started with the acetyl residue ACE, which carries the
dummy atoms with it in the standard database, or they are started with a charged N-terminal
residue, which also has dummy atoms. Likewise, nucleic acid systems are generally started with
the HB residue, which also has dummy atoms. The other residues in the database have had their
dummy atoms stripped at the end of PREP through the use of the "NOMIT" option.

In the examples below, topological types are assigned and the atoms are numbered in correct
tree structure order. An actual PREP input file appears at the end of this document.

Example 1:

M(1)--M(2) \

| <--- 3 dummy atoms to define space axes
M(3) /
|
Res —--—-- M(4)-- M(5)-- M(7)-- M(11)-- Res
n-1 | | | n+1

X | | |
| E(6) S(8) B(12)-- S(14)-- E(15)
first real | |
atom | |
E(10)-- S(9) E(13)

Example 2:
M(1)--M(2) \
| | <--- 3 dummy atoms to define space axes
M(3) /
|
Res ——-- M(4)-- M(6)-- M(13)-- M(23)--- Res
n-1 | | | | n+1

| | | |
E(5) S(7) S(l4) E(24)
| |
| |

E(10)-- B(9)-- S(8) S(15) E(18)
| | |
| | |
S(11) S(16)-- 3(17)-- S(21)-- E(22)
| |
| |

E(12) S(19)-- E(20)

Note on Tree Ordering: The tree structure begins at the first dummy atom, and traverses the
main chain until a branch point (node) is reached. That branch is traversed until its end or until the
next node is reached. When you come to a node with more than one branch (topological type "B" or
"3"), it doesn’t matter which branch is traversed first as long as you return to the next higher node
when an end is reached.

1/30/113

PREP module Page 49

PREP input files for standard peptide and nucleic acid residues are typically maintained in sev-
eral large files for generation of the standard database for the LINK module. Note that it is not nec-
essary to run the PREP module unless non-standard residues are needed. Non-standard residue data
may be output as individual files or appended to the standard database if desired.

The LINK module is currently dimensioned to handle a maximum of 150 atoms per residue.

Note that smaller, neutral residues are most appropriate unless an infinite cutoff is desired,
because the first atoms in each residue are used in applying the cutoff. The larger the residue, the more
unbalanced the cutoff, i.e. the greater difference between head-to-head and tail-to-tail orientations.

This module was originally written by P. K. Weiner at UCSF and overhauled by U. C. Singh in
1984. The data base structure was completely modified. Prep was revised for Rev A by George Seibel
in 1989.

Input description: This section describes the residue(s) input file which is read through unit 5. The
input is free format and it is assumed that the different fields are separated by at least one space
(including character fields). The character variables are always left justified. If a character field con-
tains more than four characters the rest are ignored. If it contains less extra blanks are added to it.
Since blanks are separators between fields signs have to immediately precede numbers.

-1 - CONTROL FOR DATA BASE GENERATION

The data base is a direct access file containing the
standard residues and a directory of their names. It
is named DB4.DAT in the version 4 AMBER distribution,
and is found in the DAT directory. The LINK module
will search this file for a residue before searching
the external files for it. The LINK module can only
access one database per run. Thus if any user supplied
residues are needed, they can be accessed by LINK as
individual files. The data base can also be appended
with user supplied residues if desired.

IDBGEN , IREST , ITYPF
FORMAT (31)

IDBGEN Flag for data base generation

= 0 No database generation. Output will be individual files.
This is the standard procedure if you want to create a
single small molecule.

= 1 A new data base will be generated or the existing database
will be appended.

IREST Flag for the type of generation (assuming IDBGEN = 1)
= 0 New data base
= 1 Appending an existing data base

ITYPF Force field type code (used in LINK stage)

Ignored if IDBGEN = 0 The following codes are used in
the standard database:

1/30/113

PREP module Page 50

= 1 United atom model

= 2 All atom model
= 100 United atom charged N-terminal amino acid residues
United atom charged C-terminal amino acid residues
All atom charged N-terminal amino acid residues
= 201 All atom charged C-terminal amino acid residues

o
N =
o o
o =

Note: This variable allows you to have several different
models for the same residue name stored in one database.
These models could differ in topology, charge, or other
factors. The charged terminal residues are selected
internally by LINK if the IFTPRO flag is set. The
database can hold up to 510 residues.

- 2 - NAMDBF
FORMAT (A80)
NAMDBF Name of the data base file (maximum 80 characters)

if NOT data base generation leave a BLANK CARD

-3 - TITLE

FORMAT (20A4)

TITLE Descriptive header for the residue
- 4 - NAMF
FORMAT (A80)
NAMF Name of the output file if an individual residue file is

being generated. TIf database is being generated or
appended this card IS read but ignored.

-5 - NAMRES , INTX , KFORM
FORMAT (2A,1I)
NAMRES A unique name for the residue of maximum 4 characters
INTX Flag for the type of coordinates to be saved for the
LINK module

"INT’ internal coordinates will be output (preferable)
"XYZ' cartesian coordinates will be output

1/30/113

PREP module Page 51

KFORM Format of output for individual residue files
= 0 formatted output (recommended for debugging)
1 binary output

-6 - IFIXC , IOMIT , ISYMDU , IPOS
FORMAT (4A)
IFIXC Flag for the type of input geometry of the residue(s)

"CORRECT’ The geometry is input as internal coordinates with
correct order according to the tree structure.

NOTE: the tree structure types ('M’, ’'S’, etc) and order
must be defined correctly: NA(I), NB(I), and NC(I) on card
8 are always ignored.

"CHANGE’ It is input as cartesian coordinates or part cartesian
and part internal. Cartesians should precede internals
to ensure that the resulting coordinates are correct.
Coordinates need not be in correct order, since each
is labeled with its atom number. NOTE: NA(I), NB(I), and
NC(I) on card 8 must be omitted for cartesian coordinates
with this option.

IOMIT Flag for the omission of dummy atoms

"OMIT' dummy atoms will be deleted after generating all the
information (this is used for all but the first residue
in the system)

"NOMIT' they will not be deleted (dummy atoms are retained for
the first residue of the system. others are omitted)

ISYMDU Symbol for the dummy atoms. The symbol must be
be unique. It is preferable to use 'DU’ for it

IPOS Flag for the position of dummy atoms to be deleted
"ALL’ all the dummy atoms will be deleted
"BEG’ only the beginning dummy atoms will be deleted
-7 - CuT
FORMAT (F)
CuT The cutoff distance for loop closing bonds which

cannot be defined by the tree structure. Any pair of
atoms within this distance is assumed to be bonded.
We recommend that CUT be set to 0.0 and explicit loop
closing bonds be defined below.

1/30/113

PREP module Page 52

-8 - I , IGRAPH(I) , ISYMBL(I) , ITREE(I) , NA(I) , NB(I) ,
NC(I) , R(I) , THETA(I) , PHI(I) , CHG(I) , I = 1, NATOM

FORMAT (I, 3A,3I,4F)

I The actual number of the atom in the tree.
If IFIXC .eq. 'CHANGE’ then this number is important
since the corresponding coordinates are stored at that
location. If IFIXC .eq. 'CORRECT’ then atoms are in
the correct order according to the tree structure.

NOTE: PREP always expects three dummy atoms for the beginning.

IGRAPH(I) A unique atom name for the atom I. If coordinates are
read in at the EDIT stage, this name will be used for
matching atoms. Maximum 4 characters.

ISYMBL(I) A symbol for the atom I which defines its force field
atom type and is used in the module PARM for assigning
the force field parameters.

ITREE(I) The topological type (tree symbol) for atom I
(M, s, B, E, or 3)

NA(I) The atom number to which atom I is connected.
Read but ignored for internal coordinates; If cartesian
coordinates are used, this must be omitted.

NB(I) The atom number to which atom I makes an angle along
with NA(I).
Read but ignored for internal coordinates; If cartesian
coordinates are used, this must be omitted.

NC(I) The atom number to which atom I makes a dihedral along
with NA(I) and NB(I).
Read but ignored for internal coordinates; If cartesian
coordinates are used, this must be omitted.

R(I) If IFIXC .eq. 'CORRECT’ then this is the bond length
between atoms I and NA(I)
If IFIXC .eq. 'CHANGE’ then this is the X coordinate
of atom I

THETA(I) If IFIXC .eq. 'CORRECT’ then it is the bond angle
between atom NB(I), NA(I) and I
If IFIXC .eq. 'CHANGE’ then it is the Y coordinate of
atom I

PHI(I) If IFIXC .eq. 'CORRECT’ then it is the dihedral angle
between NC(I), NB(I), NA(I) and I
If IFIXC .eq. 'CHANGE’ then it is the Z coordinate of

atom I

CHRG(I) The partial atomic charge on atom I

1/30/113

PREP module

Page 53

This section is terminated by one BLANK CARD if IFIXC = 'CORRECT’.
This section is terminated by TWO BLANK CARDS if IFIXC = 'CHANGE’.
-9 IOPR

FORMAT (A4)

IOPR

Flag to read additional information about the residue.
There are four options available. The order in which
they are specified is not important. Format is keyword
on its own line, followed by data on succeeding lines,
terminated by a BLANK CARD.

"CHARGE' Control to read additional partial atomic charges.

These will override charges specified above in section 8.
The charges are read in format(5F) for the non-dummy
atoms. A BLANK CARD terminates this section. It is
less error-prone to specify charges as in section 8.

'LOOP’ Control to read explicit loop closing bonds (in

addition to the loops generated based on the cutoff
criterion). If this option is used it is preferable

to set the cutoff criterion to zero. The loop closing
atoms are read in format(2A) as their atom (IGRAPH) names.
A BLANK CARD terminates this section.

"IMPROPER’ Control for reading the improper torsion angles. A proper

torsion I - J - K - L has I bonded to J bonded to K bonded
to L. An IMPROPER torsion is any torsion in which this is
not the case. Improper torsions are used to keep the
asymmetric centers from racemizing in the united atom
model where all the C-H hydrogens are omitted. They can
also be used to enforce planarity. The improper torsions
should be defined between 4 atoms in such a way that the
proper torsions are not duplicated. The atoms making the
improper torsions are read as their atom (IGRAPH) names.

A BLANK CARD terminates this section.

"DONE’ Control to exit from this section.

NOTE:

If extra blank cards are found between different options they

are ignored. Control will exit only when the ’'DONE’ option is

found.

If it is desired to process another residue place the

appropriate information after the 'DONE’ card.

KSTOP

KSTOP
FORMAT (A4)

Control to exit from the program

1/30/113

PREP module

"STOP’ Exit from the program. It has to be placed immediately
following the ’'DONE’ card.

The program can never make a graceful exit if this card
is missing since it is working inside an infinite loop.

Page 54

0

<blank line>

PHE
PHE

CORRECT OMIT DU

0.0
1

0 N WN

9
10
11
12
13
14
15

0

Example input for phenylalanine (united atom)

Res

HN

n-1 0
\ /
N-=--CA----C
/ | \
CB Res n+1
|
CG
/ \
CD1 CD2

CEl CE2
\ /
Cz

PHENYLALANINE PREP INPUT EXAMPLE (title)

INT

DUMM
DUMM
DUMM
N

HN
CA
CB
CG
CD1
CE1l
Cz
CE2
CD2
C

(0]

IMPROPER
-M CA N
CA +M C
CB CA N

1

(0]
C

DU
DU
DU
N

H

CH
C2
Ca
CD
CD
CD
CD
CD
C

(0]

BEG

HEHODOLONODONN RHRIRR

0 -1 -2 0.0000 0.0000 0.0000
1 0 -1 1.4490 0.0000 0.0000
2 1 0 1.5220 111.1000 0.0000
3 2 1 1.3350 116.6000 180.0000
4 3 2 1.0100 119.8000 0.0000
4 3 2 1.4490 121.9000 180.0000
6 4 3 1.5250 111.1000 60.0000
7 6 4 1.5100 115.0000 180.0000
8 7 6 1.4000 120.0000 180.0000
9 8 7 1.4000 120.0000 180.0000
10 9 8 1.4000 120.0000 0.0000
11 10 9 1.4000 120.0000 0.0000
12 11 10 1.4000 120.0000 0.0000
6 4 3 1.5220 111.1000 180.0000
14 6 4 1.2290 120.5000 0.0000

1/30/113

| |
[=eNeNeNeNeNeoNeNoNeNe N Nel

|
o o

.000

.000

.000

.5200
.2480
.2140
.0380
.0110
.0110
.0040
.0030
.0040
.0110
.5260
.5000

PREP module

LOOP
CG CD2

DONE
STOP

Rev A Revision: George Seibel
PREP Authors: P. K. Weiner and U. C. Singh

Director:

P.A. Kollman
Department of Pharmaceutical Chemistry
School of Pharmacy
University of California
San Francisco CA 94143
Phone (415) 476 4637

1/30/113

Page 55

LINK module Page 56

LINK

Usage:
link [-0O] -i input -o output -1 1lnkbin -p db4.dat

—O Overwrite output files if they exist.

The purpose of this module is to create the molecular topology file read by EDIT. It reads the
topology of individual residues from one of the standard databases and/or from individual files, and
links them together to create the topology of the final system. It uses the tree convention of the PREP
module and always connects the first main type atom of the current residue to the last main type atom
of the previous residue. In addition to this standard linking process, it can cross link specified atoms in
a molecule or different molecules to form a covalent bond. The macromolecule can be specified as a
single molecule or set of molecules. For example, double stranded DNA is normally defined as two
molecules, where each strand constitutes a molecule. Separate molecules are not linked by a covalent
bond unless explicitly specified by the cross linking information.

The standard database contains topological information for nucleic acid and peptide residues. If
non-standard residues are required, the PREP module must first be used to create this nonstandard
residue. It may be appended to the database or kept as an individual file. See PREP.DOC for details.

It is important to note that this module will generate the connectivity and the internal parameter
lists such as bond angle, dihedral and excluded atom pointers correctly. However, the coordinates are
generally not meaningful except for smaller molecules because residues are linked with the dihedral
angles stored in the data base. Side chain conformation will also be that found in the database entry.
Hence the user will generally want to read in a new coordinates at the next stage using the EDIT mod-
ule and a coordinate file.

This module was originally written by P. K. Weiner at UCSF and overhauled by U. C. Singh in
Feb. 1984. LINK 3.0 Rev A is a revision for portability and reliability by George Seibel, 1989.

NOTE: the utility program NUKIT will generate link (and nucgen) input files for nucleic acids
interactively.

Files:
file unit description
db9%4.dat 15 Prep database
input 5 Program control input

1/30/113

LINK module Page 57

output 6 User information and diagnostics
1nkbin 10 Output topology file (binary)

NOTE: LINK has formatted input, so pay careful attention to the fields specified.

Nucleic Acids

The nucleic acid residues have different naming conventions in the 1994 and 1991 databases
(db94 .dat and db4.dat, respectively). Nucgen can generate PDB files using the 1994 residue
names.

1994 Nucleic Acids

strand position termini residue names
5’ 3’

beginning OH O G5, C5, A5, T5, US
middle phosphate O G, C, AT, U
end phosphate OH G3, C3, A3, T3, U3
single residue OH OH GN, CN, AN, TN, UN

1991 Nucleic Acids

In the 1991 database, phosphates and terminal hydrogens are treated as separate residues, so the
bases have only one version: GUA, CYT, ADE, THY and URA. The phosphate group is represented
by the residue name POM. The terminal hydrogen atoms are represented by residues HB (at the 5’
end) and HE (at the 3’ end).

At the 5’ end of a nucleic acid chain, the atom H in HB is connected to the O5’ atom of the first
nucleoside. The nucleic acid chain grows in the 5’ to 3’ direction. At the 3’ end the H atom in HE is
connected to the O3’ atom of the last nucleoside residue. Two nucleoside residues are connected by a
phosphate group (POM). The 5’ and 3’ ends of POM are linked to O3’ and OS5’ atoms of the preced-
ing and following nucleoside residue.

In the case of a double-helix, the complementary chain also is represented from the 5’ end to the
3’ end. Each chain is described as a separate molecule. Thus, the double helix will be represented by
two molecules, the triple helix by three molecules.. etc..

For example, the sequence d(ATATAT).d(ATATAT) is represented by two molecules as:

ASET A T A T3E (MOL 1)
ASET A T A T3E (MOL 2)
in the 1994 convention, and

HB ADE POM THY POM ADE POM THY POM ADE POM THY HE (MOL 1)

HB ADE POM THY POM ADE POM THY POM ADE POM THY HE (MOL 2)
in the 1991 convention. The sequence d(CGATG).d(CATCG) is represented by

1/30/113

LINK module

CSEG A T G3E (MOL 1)
C5E A T C G3E (MOL 2) in the 1994 convention and

HB CYT POM GUA POM ADE POM THY POM GUA HE (MOL 1)
HB CYT POM ADE POM THY POM CYT POM GUA HE (MOL 2)

in the 1991 convention.

Page 58

Peptides and Proteins

Proteins are assumed to begin from the N-terminus and end at the C-terminus. There are three
ways to handle these termini:

(1) specify only the 'normal’ residues in the chain with IFTPRO=0 for uncharged ends:
(N--CA--..--CA--O)
which will leave "unbalanced’ charges
(2) specify only 'normal’ residues in the chain with IFTPRO=1 for charged ends:
(NH3+ --CA--...--CA-- COO-)
(3) specify the 'normal’ residues with terminal residues ACE and NME and IFTPRO=0 for neutral
ends:
(ACE--CA--...--CA--NME).
IFTPRO is on card 6B.

The program does not recognize the disulfide S-S bridge in proteins so this must be input as
cross links for each bridge (cards 6B and 6E).

name residue
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Cysteine CYS
Cystine (S-S bridge) CYX
Glutamine GLN
Glutamic acid GLU
Glycine GLY
Histidine delta H HID
Histidine epsilon H HIE
Histidine + HIP
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO

1/30/113

LINK module Page 59

Serine SER

Threonine THR

Tryptophan TRP

Tyrosine TYR

Valine VAL

Acetyl group ACE (beginning residue)
N-Methyl NME (end residue)

Input description

The following section describes the input data necessary for this module, which is read from unit
5. IMPORTANT: Character data should be left-justified.

- la - TITLE FOR THE RUN

FORMAT (20A4)

TITLE Title for identification
- 1b - blank card (read but ignored)
-2 - This section is used to inform LINK of nonstandard

residues and where these files can be located. If no
nonstandard residues are required one blank card (card 3) is
still necessary to terminate this section. If a nonstandard
residue has the same name as a standard residue found in the
database, set ITYPEF = 9 in card 6C for the nonstandard
residue. This will prevent the standard residue from being
substituted for the nonstandard residue. The actual value of
ITYPEF in the nonstandard residue file doesn’t matter.

IERES(I) , JERES(I) , KERES(I) , I = 1,NERES
FORMAT (A4,1X,I5,A40)
IERES(I) name of the residue (PREP input card 5)
JERES (1) flag for the type of topology file
(PREP input card 5 (KFORM))
= 0 formatted file

= 1 binary file

KERES(I) Name of the residue topology file (PREP input card 4)

1/30/113

LINK module Page 60

Note: The external source for nonstandard residue(s) is
read until a blank card is encountered. As many as
200 external residues can be read.

-3 - one blank card
-4 - ISYMDU
FORMAT (A4)
ISYMDU Symbol for the dummy atoms.

It is advisable to use ’'DU’ as the symbol for dummy

atoms as in the data base. The symbol for the dummy

has to be unique for a given system. It is not permitted
to have more the one dummy atom symbol. Do NOT confuse
these dummy atoms with the dummy atoms used in Perturbation.

-5 - IwO , IwWI , IWN , IWA
Output information written to file ’‘output’ (unit 6)
FORMAT (101I5)

IWO Flag to output the coordinates for each atom
= 0 coordinates will be output

= 1 output will be suppressed
IWT Flag to output the residue information for all residues
= 0 none

= 1 output the information

IWN Flag to output non-bonded excluded lists for all atoms
= 0 none
= 1 output
IWA Flag to output bond, angle and dihedral pointers
0 none
= 1 output
- 6 - Individual molecule information. The program will

continue to read groups of cards described in this
section until a ‘QUIT’ card is encountered. Each group
of cards represents one molecule. Repeat cards 6A - 6F
for each molecule of the system.

1/30/113

LINK module Page 61

FORMAT (20A4)

TITLE Subtitle for the molecule

- 6B - LBMOL , ICROSL , ICONN , NAO , NMO , IFTPRO
FORMAT (A1,TI4,415)

LBMOL Label for the type of molecule.
This is necessary since some adjustments of the end
residues of nucleotides and peptides are made so
that the charge of the system is an integral value.
Consult the subroutine BLDIT in the LINK source code
for details.

‘D’ the molecule is a deoxy nucleotide

'R’ the molecule is a ribonucleotide

‘P’ the molecule is a peptide or protein

'O’ the molecule is anything else ('O’ = other)

ICROSL Flag for the presence of cross links within the
molecule or between molecules.

= 0 none
= 1 cross link is present and its information will be read
after the residue sequence.

ICONN Read but not used.

NMO The molecule number to which the first main atom of
the present molecule is attached either by a covalent or
non-covalent bond. If there is no covalent attachment,

NMO should be set equal to 1, as the first molecule defines
the space axes for all subsequent molecules.
*** This is usually set equal to 1 **%*

NAO The relative atom number in molecule NMO to which the
current molecule’s first main type atom is connected.
If there is no covalent connection NAO should be set
equal to 3 as the space axes are defined by the first
three atoms of the first molecule. If this is not done
there will be an error in converting from internal
coordinates to cartesian coordinates in the EDIT module.
*** This is usually set equal to 3 ***

IFTPRO Flag for the type of protein terminal residues

0 Standard (uncharged) terminal residues
1 Charged terminal residues (NH3+, COO-)

1/30/113

LINK module Page 62

- 6C - Residue information for the current molecule. It is read
in the following format until a blank card is encountered.

LBRES(I) , ITYPF(I) , I = 1, NRESM
FORMAT (16 (A4,I1))
LBRES(I) Residue name

ITYPF(I) The type of force field for the current residue.
This option is included so that different types of residues
may be kept in the data base. Currently three types are
available; the united atom type, the all atom type, and
Jorgensen’s OPLS model.
Additional models could be put into the data base and
retrieved using this option.

= 1 united atom model
all atom model
= 3 OPLS united atom model (requires use of OPLS force field file)

I
N

If this is zero then the previous non zero value is carried
over until a non zero option is specified.

NOTE: The program assumes it is done reading the residue
information when it encounters a blank card. It is
always assumed that the first main type atom of the
current residue is connected to the last main type atom
of the preceding residue by a covalent bond. If this
covalent linkage is not desired the two residues should
be separated by the spacer residue, '***’, When two
residues are separated by the spacer residue they are
connected without a covalent linkage.

For example the sequence ALA 1GLY will be connected by
a covalent bond while ALA 1*** GLY will be topologically
connected but no bonding parameters will be considered.
Both systems in this example use the united atom force

field.
- 6D - Blank card to terminate residue input
- 6E - This section is used to create cross linkages within a

molecule or between different molecules. A normal use of
this is to create disulfide bonds in proteins.

x%x*% ONLY IF ICROSL.GT.Q *x*x*
*%% TCROSL is set in card 6B **%*

ICROS , JCROS , IACROS , JACROS , MOLNM

FORMAT (2I5,2A4,I5)

1/30/113

LINK module Page 63

ICROS , JCROS

The residue numbers, as they are listed in 6C, of the two
residues to be cross linked. ICROS specifies the relative
residue number in molecule MOLNM, (MOLNM is assumed to be
the current molecule number unless otherwise specified at
the end of this card.), and the residue JCROS is assumed
to be in the current molecule.

IACROS The graph name, the name assigned to the atom in PREP, of
the atom in residue ICROS which is involved in the cross link.

JACROS The graph name of the atom in residue JCROS which is
involved in the cross link.

MOLNM The molecule number to which the residue ICROS belongs.
If MOLNM = 0 then it is assumed to be in the current
molecule.

- 6F - Blank card if ICROSL .GT. 0

-7 - KSTOP

FORMAT (A4)
KSTOP Control to exit from the program

immediately following the last blank card. If additional
molecules are to be processed the cards in group 6 are
repeated before the 'QUIT’ card. The program will never
make a graceful exit if this card is missing since it

is working inside an infinite loop.

++++++ END OF INPUT ++++++

Rev A Revision: George Seibel
LINK 3.0 Authors: U.C. Singh and P.K. Weiner
Director: P.A. Kollman
Department of Pharmaceutical Chemistry
School of Pharmacy
University of California
San Francisco CA 94143
Phone (415) 476 4637

1/30/113

EDIT module Page 64

EDIT

Usage:

edit [-0] -i input -o output -1 lnkbin -e edtbin
[-pi pdbin -po pdbout -a addwat -b boxfil -z zmat]

—O Overwrite output files if they exist.

The main purpose of this module is to provide correct coordinates for the LINK generated struc-
ture, and to remove dummy atoms. The topology of each residue in the LINK file is correct, but inter-
residue dihedral angles and side chain conformations are mostly arbitrary (i.e. a peptide generated sim-
ply using LINK will be linear). Thus it is necessary to provide coordinates for some (usually most) of
the atoms of the system.

Unlike previous versions of EDIT, this revision will now read a standard Protein Data Bank
(PDB) format coordinate file as supplied by Brookhaven National Laboratory. It is no longer neces-
sary to strip out non-’ATOM’ records from your PDB files.

For each residue in the LINK topology file, EDIT will attempt to match atoms from the PDB file
by atom name on a residue by residue basis. If atoms in the PDB file are missing (e.g. hydrogens from
an x-ray data file) relative to the LINK topology file, EDIT will try to generate their coordinates using
the internal coordinates from the LINK file. If this is not possible, the missing atoms can be assigned
explicitly through the use of the ’ABC’ option. Any extra atoms in the PDB file will be ignored and a
diagnostic issued.

In addition, various EDIT options allow the user to solvate the molecule (either with cubes of
standard "Monte Carlo" water or water from a PDB file), to add counterions to nucleic acids automati-
cally, and to modify the sugar pucker of nucleic acids.

This module was originally written by P. K. Weiner at UCSF and was updated by U. C. Singh
1986. Revision A constitutes a further update by G.L. Seibel, 1989. 4.0/4.1 updates/additions by J. W.
Caldwell 1992/1994 and Bill Ross and Thomas Huber 1994.

On VMS systems files are assigned by Fortran unit number. These are given below along with a
description of each file. Files shown in [] above are optional, others are mandatory.

input 5 Program control input

output 6 User information and diagnostics

Inkbin 10 Input topology file from LINK (binary)

edtbin 12 Output topology file to be read by PARM
(binary)

1/30/113

EDIT module Page 65
pdbin 15 PDB input (X-ray or model-built)
coordinates. See the "XRAY" option.
pdbout 18 PDB output. See the "XRAY" option.
addwat 25 Water molecules in PDB format. Used for
input of crystallographic waters. See the

"ADD" option.

boxfil 35 Monte Carlo water for solvating the system.
See the "BOX" ,"SOL" etc options.

zmat 7 Unit to write the coordinates in a z-matrix
solv 55 Unit to read the topology for the "general"
solvent

Input description:

-1 - TITLE FOR THE EDIT INPUT

FORMAT (20A4)

TITLE title for identification purposes
-2 - IWO , IWN , IWA, ILINK
FORMAT (41I5)
IWO Flag to output the coordinates for each atom

= 0 coordinates will be output to unit 6.
= 1 output will be suppressed

IWN Flag to output non-bonded excluded lists for all atoms

= 0 none (recommended)
= 1 output

IWA Flag to output bond, angle, and dihedral pointers

= 0 none (recommended)
= 1 output

ILINK Flag for reading solute from lnkbin

= 0 normal
= 1 don’'t read lnkbin - pure water with no solute

1/30/113

EDIT module Page 66

EDIT options are invoked by keywords read from unit 5. Each
keyword is processed as it is encountered in the file. Many of
the options require further input which is read in card image
format directly following the keyword. The following section
describes each keyword briefly. Any extra input needed by the
various options is found in the section after the following.

Note that the sequence of options has to follow certain logic

to get meaningful output for other modules. For example, the
placement of counterions or use of any of the solvation options
should not be attempted until after the xray coordinates have
been read. Coordinates assigned by ABC for atoms that could not
be matched in XRAY must be put on AFTER the PDB input is read.
One should not attempt to write PDB output until all options that
add to or change the coordinates have been completed.

-4 - CONTROL WORDS FOR INVOKING EDIT OPTIONS
IFORM
FORMAT (A4)
IFORM The control word for the option
"XYZ' Option to convert the coordinates from internal to

cartesian coordinates. This is necessary because

the LINK module builds the macromolecule from the
residue topology files, most of which are in internal
coordinates. The current minimizer works only in
cartesian space, therefore it is necessary to convert
the internal coordinates to cartesian coordinates
before proceeding further.

"INT’ Option to convert the coordinates from cartesian to
internal. This option is suitable for internal
coordinates minimization (not currently available).

After reading the correct coordinates from the external
source in cartesian form they can be converted to
internal form.

"XRAY’ Option to read and/or write the desired coordinates for
the system in PDB format. The program reads the external
source residue by residue and assigns coordinates for each
residue in the topology file from LINK based on matching of
atom names. Note that the residues must have the same names
and order in the PDB file as in the LINK input for warningless
matching to occur. A Brookhaven Protein Data Bank (PDB) ’'ATOM’
record looks like this:

ATOM 1234 N ILE 116 18.896 65.826 12.793

1/30/113

EDIT module Page 67

The fields shown are:
record type atom# atom name residue name residue# x y z

Other fields are used in standard PDB files but not

read by EDIT. It is necessary that the atom names in

the PDB file be identical to the atom names in the standard
database or any user prepared residue files. Any atoms
present in the LINK topology file but missing from the PDB
file will be added automatically using the stored internal
coordinates from the LINK topology file. 1In the event that
the stored internal coordinates are insufficient to assign
missing atoms, they may be assigned explicitly through the
use of the 'ABC’ option. Extra atoms in the PDB file are
ignored and a diagnostic is issued.

"ABC’ Option to fix the coordinates of specified atoms by means
of internal coordinates. This is useful to fix beginning
hydrogen atoms for which there is insufficient main chain
"TREE" information. This option can also be used to override
the default PREP coordinates in the case PDB coordinates
are not available.

"PUCKER’ Special option to change the sugar puckering values in
DNA or RNA. It is useful in forcing some of the sugar puckers
to different conformations for minimization.

"CION’ Option to place counter ions around any charged groups
such as the phosphate residue in DNA with the atom type CI
(The option is designed primarily for nucleic acids and
may place the counter ions incorrectly for other type of
molecules).

"SOL’ Option to solvate the system. The solute molecule is
placed in a cube of "Monte Carlo water". Water molecules
are removed based on input steric and distance criteria.
The SOL option can be used to create a spherical "CAP"
of water molecules centered on a key part of the solute
or can be used to create an asymmetric "BLOB" of water
surrounding the entire solute.

"OCT’ Option to make any subsequent periodic solvation
(e.g. 'BOX’) assume truncated octahedral rather than
rectilinear shape. In general, this means that fewer
waters will be required to solvate to a given distance
from the solute. [Information on the box shape is passed
through PARM and is used if periodic conditions are
specified in dynamics (NTB not equal to 0).]

"BOX’ Option to place the solute into a large volume of
TIP3P "Monte Carlo water" which is then truncated to a "box"
around the solute based on user cutoff criteria. The box is
rectilinear by default, or truncated octahedral if the ’'OCT’
keyword precedes this option. Water molecules are
characterized by three bonds rather than two bonds and an

1/30/113

EDIT module Page 68

angle. This results in a rigid, TIP3P water model if SHAKE
is used on covalent bonds involving Hydrogens during dynamics.

'BX4' Same as ’'BOX’, except the four-point TIP4P water model
is used. Water molecules are characterized by six bonds
rather than two bonds and an angle. The 4th point is on the
C2v axis between the Oxygen and Hydrogens and carries the
negative charge. In dynamics, SHAKE must be used on covalent
bonds involving Hydrogens to achieve a rigid TIP4P model.

'WAT'’ Option to make a box of NCUBE"3 * 216 water molecules.
No solute is involved, and ILINK on Line 2 must be set to 1.
The box is rectilinear by default, or truncated octahedral if
the ’'OCT’ keyword precedes this option. The water molecules
are TIP3P as described in ’'BOX’, above.

"TP4’ Same as 'WAT’, but the water molecules are TIP4P as
described in ’'BX4’, above.

"FLO’ Same as 'WAT’, but the water molecules are 'floppy’,
i.e. "normal" two bonds and an angle water.

"ADD’ Option to add an arbitrary amount of water to the solute
for partial hydration. The coordinates of the water
molecules can be obtained either from x-ray or from model
building and are read in PDB format from unit 25.
Atom names must begin with 'O’ or 'H’ for Oxygen and
Hydrogens, respectively. The atoms can be in any order
within the residue, but each water must have one Oxygen and
two Hydrogens. Atom numbers, residue names, and residue
numbers in the file will be ignored. The file must NOT
contain any non-ATOM format records, i.e. no TER, HEADER, etc.

"GEN’ Option to make a box of solvent in a quasi crystal
around a solute. Additional information must be read from
files specified by the -s and -b flags. The -s file contains
the PREP topology data (the output file as specified on line 4
of the prep file) for the new solvent, the -b file contains the
pdb coordinates of a representative solvent residue.

'"DIHED’ Option to calculate bond, angle and dihedral values only
for specified atoms.

"TELL’ Option to calculate and print the bond, bond angle, and
dihedral angle values for ALL atoms.

"GAUSS' Option to punch out the coordinates in a z-matrix.
"QUIT’ Option to terminate the run. Necessary!
ADDITIONAL INPUT FOR EACH OPTION -- UNIT 5 --

1/30/113

EDIT module Page 69

XYZ OR INT
XYZ/INT 1: IOMIT
FORMAT (A4)
IOMIT Flag to omit the dummy atoms from the system. When the

LINK module links different residues into a macromolecule
an unspecified number of dummy atoms will be present for
defining the coordinate axes. These dummy atoms are
essential in the case of internal coordinate minimization
(not implemented) but should be removed for minimization
in cartesian space.

"OMIT' Dummy atoms are omitted.
! ! Dummy atoms are not omitted.

This flag is maintained for future development of
minimization in internal coordinate space.

XRAY
XRAY 1: IOoOPT , IOPTF , MOLNU , IDBL
FORMAT (4I5)
IOPT Flag for reading or writing the coordinates.

= 0 Read in new coordinates in PDB format for replacing
the LINK coordinates. Coords are read from unit 15.

= 1 Read in new coordinates and output the replaced coordinates
in PDB format. Units 15 and 18 are used. This is the
same as calling XRAY twice, first with IOPT=0, then 2.
It is often necessary to use IOPT=0, call other EDIT
options, then call XRAY again with IOPT=2 in order to get
all the coordinates out.

= 2 Write out the coordinates in PDB format to unit 18.

IOPTF Read but not used.

MOLNU The molecule number for which the coordinates are to be
read and replaced.

= 0 All the molecules coordinates are replaced.
0

> The specific molecule whose coordinates are to be replaced.
NOTE: It is advisable to read in the new coordinates for

1/30/113

EDIT module Page 70
all the molecules to avoid an error in generating the
coordinates for minimization.
IDBL Flag to write out the coordinates in extended precision.

= 0 Normal PDB format.
= 1 Coordinates are written in 3F10.5 instead of 3F8.3.

CION
CION 1: CMIN , SDIST , DISCK , CUTSB
FORMAT (4F10.3)
CMIN The program sums all the charges in a sphere of radius

"SDIST" around the specified atom(s) (see next card)
and places a counter ion only if the sum is greater than
or equal to CMIN.

SDIST The sphere radius around the specified atom(s) for
calculating the charge.

DISCK The cutoff distance between any atom in the molecule and
the counter ion to be placed. If the distance is less
than or equal to DISCK then a counter ion is not placed.

CUTSB The cutoff distance between two specified atom centers to
be assumed to have a salt bridge. If the distance between
any two atom centers around which counter ions have to be
placed is .le. CUTSB and the counter ions are opposite in
sign then a salt bridge is assumed and the counter ions
are not placed.

CION 2: JRESN , JATN , CION , DISTI
FORMAT (A4,1X,A4,1X,2F10.2)
JRESN Residue name to which atom "JATN" belongs.

All the atoms with this residue name will be taken into
account for placing the counter ion.

JATN The atom name around which counter ion is to be placed.
CION The charge on the counter ion.
DISTI The distance between the counter ion and the specified atom.

Note: A maximum of 50 atom centers can be read for placing

1/30/113

EDIT module Page 71

counter ions.

CION 3: Blank card to terminate CION input

ABC 1: MOLNU , IPART , IDIREC
FORMAT (I5,A3,1I5)

MOLNU The molecule number in which the following specified
atoms are located which need to have coordinates fixed.
If MOLNU.le.0 then it is assumed that the atom numbers
defined are the absolute numbers. Otherwise, it refers
to the relative number with respect to the molecule

specified.
IPART Flag for ending this option.
'QuUIL’ Termination of the option.
IDIREC Flag for searching for the connecting atoms to the

specified atom (if those atoms are not given explicitly).
In order to fix a specified atom, three other atoms are
necessary. If those atoms are not given, they are
determined by the tree structure. The three atoms chosen
are three consecutive main type atoms which are closest
along the tree. The search direction along the tree to
get those atoms is controlled by this flag.

= 0 Search direction is "up the tree", or toward higher
atom numbers. If the specified atom is connected to an
atom other than a main type then the first main atom is
located along the downward tree and the other two main
atoms are taken along the upward tree from that point.
= -1 Search direction is downward tree (toward beginning).
ABC 2: NA , R, THETA , PHI , NB , NC , ND

FORMAT (I, 3F,3I)

NA The atom number whose coordinates are to be fixed.
If MOLNU.eq.0 then it refers to the absolute number.

R The bond length between "NA" and "NB".

1/30/113

EDIT module Page 72

THETA The bond angle between "NA" , "NB" and "NC".

PHI The dihedral angle between "NA" , "NB" , "NC" and "ND".
NB Number of the atom bonded to NA.

NC Number of the atom bonded to NB.

ND Number of the atom bonded to NC.

NOTE: If NB, NC, and ND are not given, then they will be
generated from the tree structure.

The input for atom specification is terminated by
a blank card.

NOTE: This option is terminated when IPART .eq. 'QUI’.
DIHED
DIHED 1: IAT , JAT , KAT , LAT
FORMAT (41)
IAT ... Atom numbers for which bond length, bond angle and

dihedral angle are required.

If IAT = 0 then this option is terminated.

If KAT 0 and LAT = 0 then only bond length between
IAT and JAT is calculated. TIf LAT = 0 then bond length
and bond angle are calculated.

There is no limit for the number of sets of
atoms for calculating the internal parameters.

NOTE: The option is terminated by a blank card.

PUCKER 1: ITITL
FORMAT (20A4)

ITITL A sub title for this option.

1/30/113

EDIT module Page 73

PUCKER 2: TMAX , PHASE
FORMAT (2F10.2)
TMAX Amplitude for the pseudo rotation.

PHASE Phase angle of the pseudo rotation of the five membered

PUCKER 3: KRANAM(I) , I =1, 5
FORMAT (5 (A4,1X))

KRANAM(I) The atom name of the sugar ring atoms whose pucker
is to be changed.

PUCKER 4: IRES
FORMAT (I5)
IRES The number of the residue to which the sugar ring belongs.
This card can be repeated for all the residues whose

sugar ring pucker is to be changed to the above value.

This option is terminated when IRES = 0.

TELL
TELL 1: IOPTB , IOPTA , IOPTD
FORMAT (3I5)
IOPTB Flag to print bond lengths.
= 0 none

1 bond lengths will be printed
IOPTA Flag for printing bond angles.

= 0 none
1 bond angles will be printed

IOPTD Flag to print dihedral angles.

= 0 none
1 dihedral angles will be printed

1/30/113

EDIT module Page 74

TELL 2: MOL1 , MOL2
FORMAT (2I5)
MOL1,MOL2 The range of molecules for which the internal coordinates
are to be printed. TIf MOL2 is greater than the total
number of molecules in the system it is set to the total
number of molecules.
This card can be repeated for different ranges of molecules.

TELL 3: Blank card to terminate TELL.

SOL 1: KH , KO, NCUBE
FORMAT (A4, 1X,A4,1X,I5)

KH The atom type for the HYDROGEN atom in water
The default atom type is 'HW'’

KO The atom type for the OXYGEN atom in water
The default atom type is 'OW’

NCUBE This indicates the NCUBE**3 boxes of 216 Monte Carlo
waters. The limit is determined by parameter MAXWAT
in the Rev A EDIT code. It is usually set for NCUBE = 4,
which would be 64 216 water boxes creating a 75A cube.

SOL 2: QH , DISO , DISH
FORMAT (3F10.5)
QH Charge on the water hydrogen atoms.
DISO Waters whose oxygen atom is closer than DISO Angstroms

to any solute atom are discarded.

DISH Waters whose nearest hydrogen atom is closer than DISO
Angstroms to any solute atom are discarded.

1/30/113

EDIT module Page 75

SOL 3: IORINT , IPRINT , NOWALL , IGROUP
FORMAT (1015)

IORINT Flag to orient the water molecule along the electric
field produced by the rest of the system.

= 0 No orientation.
= 1 The water molecule is reoriented keeping the oxygen
position fixed.

IPRINT Flag to print the electric field vector when the water
molecule is reoriented.

= 0 Electric field will not be printed.
= 1 Electric field will be printed.

NOWALL (unused)

IGROUP Controls whether CAP or BLOB solvation is produced.

= 0 BLOB option: All the atoms in the solute molecule will
be taken into account and the center of mass of the
solvent will be moved to that of the solute. Waters
within 'CUT’ (next card) of any atom in the solute will
be retained.

= 1 CAP option: A spherical cap of waters of radius ’CUT’
will be centered on the center of mass of the atoms
specified in group format below. CAP information will
be written to the topology file to be passed through
PARM to the simulation programs.

= -1 CAP option as above, but the cap will be centered on

the cartesian coordinates XMOVE, YMOVE and ZMOVE to be
read below.

SOL 4: CUT , XMOVE , YMOVE , ZMOVE
FORMAT (10F10.5)
CuT Waters whose oxygen atom is within "CUT" Angstroms
of the solute atoms chosen by IGROUP above will be

retained; others are discarded.

XMOVE The X coordinate to which the center of mass of the
solvent bath has to be moved if IGROUP is NEGATIVE.

YMOVE The Y coordinate to which the center of mass of
the solvent bath has to be moved if IGROUP is NEGATIVE.

1/30/113

EDIT module Page 76

ZMOVE The Z coordinate to which the center of mass of the
solvent bath has to be moved if IGROUP is NEGATIVE

SOL 5: *%%%% ONLY IF IGROUP .GT. Q ****%*

The atoms of the solute to be taken for the center of
mass calculation to which the CAP will be centered
are read in GROUP format. See the GROUP section of
the Appendices.

ADD
ADD 1: QH , KH , KO
FORMAT (F10.5,2A4)
QH The charge on the water hydrogen.

If QH .le. 0.0 then QH = 0.417.

KH The atom type for the HYDROGEN atom in water
If KH is blank the atom type defaults to 'HW’

KO The atom type for the OXYGEN atom in water
If KO is blank the atom type defaults to 'OW’

BOX
BOX 1: KH , KO, NCUBE
FORMAT (4A,1X,4A,1X,I5)
KH The atom type for the HYDROGEN atom in water

The default atom type is 'HW'’

KO The atom type for the OXYGEN atom in water
The default atom type is 'OW’

NCUBE This indicates the NCUBE**3 boxes of 216 Monte Carlo
waters. The limit is determined by parameter MAXWAT

in the Rev A EDIT code. It is usually set for NCUBE = 4,
which would be 64 216 water boxes creating a 75A cube.

1/30/113

EDIT module Page 77

BOX 2: QH , DISO , DISH
FORMAT (3F10.5)
QH Charge on the water hydrogen atoms.
DISO Minimum distance of the water oxygen atom from any of

solute atoms.

DISH Minimum distance of the water hydrogen from any of the
solute atoms.

BOX 3: CUTX , CUTY , CUTZ
FORMAT (10F10.5)

CUTX Any water molecule which is farther than "CUTX" along
the X-axis from any atom of solute will be discarded
for the Calculation. Essentially CUTX defines the
minimum thickness of the solvent shell along the X-axis.

CUTY Same as CUTX but for Y-axis

CUTZ Same as CUTX but for Z-axis
e
e e 0 e 50 oot < s
“““““““““““““““““““““ w o
e oo s mn

FORMAT (4A,1X,4A,1X,1I5)

KH The atom type for the HYDROGEN atom in water
The default atom type is 'HW'’

KO The atom type for the OXYGEN atom in water
The default atom type is 'OW’

NCUBE This indicates the NCUBE**3 boxes of 216 Monte Carlo

waters. The limit is determined by parameter MAXWAT
in the Rev A EDIT code. It is usually set for NCUBE = 4,

1/30/113

EDIT module

which would be 64 216 water boxes creating a 75A cube.

ITRIM = 1 read in the final box dimensions below (WAT 3)

WAT 2: QH
FORMAT (3F10.5)
QH Charge on the water hydrogen atoms.

WAT 3: (only if ITRIM = 1)
FORMAT (3F10.5)

XNEW, YNEW, ZNEW (box edges in angstroms).

Same as WAT execpt KO is ignored (set to zero actually)
and KEP = -2 * KH.

FLO
FLO 1: KH , KO, NCUBE
FORMAT (4A,1X,4A,1X,I5)
KH The atom type for the HYDROGEN atom in water.

The default atom type is 'HW’.

KO The atom type for the OXYGEN atom in water.
The default atom type is 'OW’.

NCUBE This indicates the NCUBE**3 boxes of 216 Monte Carlo
waters. The limit is determined by parameter MAXWAT
in the Rev A EDIT code. It is usually set for NCUBE = 4,
which would be 64 216 water boxes creating a 75A cube.

FLO 2: QH , DISO , DISH

1/30/113

Page 78

EDIT module Page 79

FORMAT (3F10.5)
QH Charge on the water hydrogen atoms.
GEN
GEN 1: DISS, SCALE, KFORM (defaults: 2.0, 1.0, 0)
FORMAT (2F10.5, I5)
DISS: Minimum contact distance for solvent-solute
SCALE: Scale factor for expansion/compression of

solvent to enable the user to get the approximately
correct density for the starting coordinates.

KFORM: Form of ~-s” file.

=0 “-s” is formatted

=1 "-s” is binary

GEN 2: cuTx, CuTyY, CUTZ, ITYP
FORMAT (3F10.5, I5)

CuTXx, CuUTY, CUTZ:
Distance the solvent is to extend from the solute.

ITYP: Generate array of solvent molecules or use box.

= 0 Generate array from prep solvent residue only.
1 Use pdb box of solvent residues.

++++++ END OF INPUT ++++++

Rev 4.1 Additions: Jim Caldwell, Thomas Huber, and Bill Ross
Rev 4.0 Additions: Jim Caldwell
Rev 3A Revision: George Seibel
EDIT Authors: U.C. Singh, PK. Weiner, and S.J. Weiner
Director: P.A. Kollman
Department of Pharmaceutical Chemistry
School of Pharmacy
University of California
San Francisco CA 94143

1/30/113

EDIT module Page 80

Phone (415) 476 4637

1/30/113

PARM module

Usage:

parm [-O] -i input -o output -e edtbin -f frcfld
-c prmcrd -p prmtop -m frcmod

—O Overwrite output files if they exist.

PARM

Page 81

The purpose of this module is to assign the force field parameters for all the constants in the
potential energy function to the topology file created by EDIT. The constants such as equilibrium
bond lengths, angles, dihedral angles and their force constants and the non-bonded 6-12 parameters
and H-bond 10-12 parameters are read in from a parameter file. Parameters are allocated based on
Amber atom types. Internal coordinate constraints can be placed on any of the atoms in the system by
the use of the CONS option. Note: force constants are in terms of kcal/mol, distances in Angstroms,
bond angles in radians for standard parameters and degrees for internal constraints, and dihedral angles
in terms of degrees. Note also that both internal and cartesian constraints can be applied directly in the
simulation programs, which are also capable of holding groups of atoms fixed with the ’belly’ option.

PARM creates both a molecular topology file and a coordinate file that can be read by the mini-
mizer, the dynamics module, the normal modes module, and the static and dynamics analysis modules.

This version of PARM also handles input for Free Energy Perturbation (GIBBS) calculations.

Files:

input

output
frcfld
frcmod

prmtop

edtbin

prmcrd

5

10

16

12

15

18

Input parameters:

TITLE FOR THE RUN.

read control data

output user information and diagnostics
read the force field parameters
read modified force field parameters

output the molecular topology for SANDER,
GIBBS, NMODE, ANAL, MDANAL and CARNAL

read the molecular topology generated by EDIT

output the coordinates

FORMAT (20A4)

1/30/113

PARM module Page 82

2.1

2.2

- JFORI , KFORM , NAMNB , IFCON , KPERT ,IPOLA
FORMAT (20A4)

JFORI Flag for the type of format for the molecular topology
file from the EDIT module.

"BIN’ The file is in binary form.
"FOR’ The file is in formatted form.
Only the binary form is currently output from the EDIT.

KFORM Flag for the type of format for the molecular topology
file output from this module.

"BIN’ The parameter and coordinate files will be written in
binary form.
"FOR' The files will be in formatted form.

The formatted form is necessary when the output topology
file will be used on a different type of machine than
the one on which it was created.

NAMNB The name of the non-bonded parameters. This name
must match with the label on one of the nonbonded sets in the
parameter file. It is used to enable one to keep several
different sets of non-bonded parameters in the same file
and use only the one desired for a given calculation.

IFCON Flag for reading internal parameter constraints.

"CONS'’ Internal coordinate constraints will be read.
’ ’ No internal constraints.

IPERT Flag for reading Perturbation Information

'PERT’ Perturbation Information will be input
' ! No Perturbation Calculation

IPOLA Flag for adding polarizabilites to the topology file

"POLA’ atomic polariziabilites will be added to the topology
' ! No polarizability info

- ILBL , ILTP , ILPP
FORMAT (3I5)

ILBL Flag for printing all the bonds in the system with the
parameters assigned to them.

1/30/113

PARM module Page 83

=0 None (recommended)
=1 All the bonds will be output.

3.2 ILTP Flag for printing all the angles.

=0 None (recommended)
=1 All the angles will be output.

3.3 ILPP Flag for printing all the dihedrals.

=0 none (recommended)
=1 All the dihedrals will be output.

The list of torsional parameters (force field terms)

is itemized by GROUP of parameters that refer to one
underlying torsional sequence, although internally the
program keeps a separate sequence for each parameter, i.e.
separately labeling elements of groups. These internal
sequence numbers (ICP indices) are used if you request
that a list of topological torsions and the assigned
parameters be output. E.g. in the force field listing:

[vnn]

6 CT-CT-C -0 1 0.07 180.0 3.
7 N -CT-C -0 1 0.07 180.0 3.
8 H -N -C -0 1 2.50 180.0 -2.

0.65 0.0 1.
Improper Dihedrals:
9 X -X -N -H 1.00 180.0 2.
10 X -X -C -0 10.50 180.0 2.
11 X -CT-N -CT 1.00 180.0 2.

where the "8" refers to two torsional parameters here,
that is, two terms that are both used (a Fourier series)
for a single torsion type (H-N-C-0). But for bookeeping,
those are two separate torsional parameters, each with its
own ICP number. In terms of ICP numbers, they’re 8 and 9,
and the next item "9" is ICP 10, etc. In the topological
listing:

[vnn]

All Dihedrals in System:

I I1 Jl K1l Ll ICP
1. 1 2 5 6 HC-CT-C -0 5
2. 2 7 5 6 CT-N -C -0 11

Here, ICP 11 corresponds to term 10, above.

1/30/113

PARM module Page 84

- 4 - IPARML , IOHB , IONB
FORMAT (31I5)
4.1 IPARML Flag to list all the parameters read.
=0 None
=1 All the modified parameters will be output. (recommended)

= 2 All parameters printed (modified + standard)
Note: some parameters that are not used in the
system may appear in the output.

4.2 IOHB Flag to list all the H-bond pair types.

=0 None
=1 All the H-bond pair types will be output.

4.3 IONB Flag to list all the non-bonded pair types.

=0 None
=1 All the non-bonded pair types will be output.

-5 - **%%% ONLY IF IPERT .EQ. 'PERT' ****%
ITITL
FORMAT (20A4)
5.1 ITITL Control word for reading the perturbation input
"PERTURBATION’

Perturbation input begins. This line is mandatory
if IPERT .eq. 'PERT’

- 5A - A TITLE CARD FOR EACH TYPE OF INPUT TO BE GIVEN BELOW
ITITL
FORMAT (20A4)

5a.1 ITITL This card is used as a title for each perturbed
residue. It may also be a control variable. If the first
four characters match any of the keywords below, it is taken
as a control variable and the action indicated below is taken.
Note: each NEW (not repeat) residue requires a descriptive
title card.

"END Perturbation input ends

'REPEAT’' Flag for repeating the previous residue input for
the following residues. This is useful for identical

1/30/113

PARM module Page 85

residues.

- 5B - CONTROL CARD FOR THE TYPE OF INPUT
ITYPE , LABEL , INUMR

FORMAT (2A,T)
5b.1 ITYPE Flag for the type of Input

'RES The input will be for a whole residue. End the
residue input with ’'END’ on the following line,
in addition to the 'END’ that ends perturbation input.
"ATOM’ The input will be given for individual atoms. Atom
input is ended with a blank line.

5b.2 LABEL The name of the residue you are perturbing TO if
ITYPE .EQ. 'RES '.

5b.3 INUMR The perturbed residue number if ITYPE .EQ. 'RES ’

NOTES:

The INITIAL state of the perturbed system is that which
is defined in the topology file from the EDIT module. The
FINAL state of the perturbed system is input here.

The perturbed residue must have the same topology and
number of atoms as the original residue. Thus if you want
to perturb alanine into phenylalanine you must include the
proper number of "dummy" atoms in the initial alanine
residue to compensate for the extra atoms in the phenyl ring.
These "dummy" atoms are not the same as the dummy atoms used
in PREP for definition of the coordinate space, and MUST NOT
be given the same atom type symbol as those. The Perturbation
dummy atoms are not removed by EDIT. They remain in the system
throughout all calculations.

The ’'ATOM’ option should ONLY be used under two
circumstances: 1) if the entire residue consists of only
one atom, and 2) if one wants to perturb ONLY the VDW
parameters of an atom. Otherwise, the 'RES’ option should
be used. This ensures that proper charge relationships
will be maintained after perturbing an atom or several atoms.
For example, if benzene is to be perturbed into pyridine,
all the atoms in the benzene residue must be treated as
perturbed atoms. This allows one to account for the polarity
which develops during the introduction of the nitrogen atom.
For more information on the general theory see:

U. C. Singh, F. K. Brown, P. A. Bash, P. A. Kollman,
J. Am. Chem. Soc. 109, 1607, 1987.

1/30/113

PARM module Page 86

- 5C - INUM , IGRPER , ISMPER , CGPER
FORMAT(I,2A,F)

5c.1 INUM The perturbed atom number if ITYPE .EQ. ’'ATOM’
It is ignored in RES input.

5c¢.2 IGRPER The atom name for the perturbed atom
(final state)

5¢.3 ISMPER The atom type symbol for the perturbed atom
(final state)

5c.4 CGPER The partial charge for the perturbed atom
(final state)

5c.5 POLPER The atomic polarizability for the perturbed atom
(final state)

NOTE: In the case of residues the total number of
input atoms should match the number of atoms
for that residue in the EDIT topology file.

If you are growing atoms where there were none

before, your EDIT topology file must have been
built with appropriate dummy atoms in their place.

- 5D - INPUT FOR REPEATING RESIDUES
ITRES , IRES, [IRES, ...]
FORMAT (2A,201)
5d.1 ITRES Control flag for the residue repeat input
It must be 'RES ' for repeating the immediately preceding

residue information

5d.2 IRES The residue numbers for which the previous input
is to be repeated. Max 10 per card.

** The REPEAT group is terminated with an ’'END ' card, in
addition to the 'END ' that terminates perturbation input.

-6 - *%%x%* ONLY IF IFCON .EQ. 'CONS’ #*x%%%
IAT , JAT , KAT , LAT , REQ , CONK
FORMAT (4I5,2F10.2)

We recommend applying internal constraints via the simulation
programs’ input rather than using this option. These programs

1/30/113

PARM module Page 87
also have options for harmonic cartesian constraints and
freezing of groups of atoms (with the belly option).

6. IAT, JAT, KAT, LAT
Atom numbers for which internal constraints are to be applied.

IAT .le. 0 : reading of constraint cards is terminated.

KAT .le. 0 : a bond constraint is assumed between the atoms
IAT and JAT.

LAT .le. 0 : an angle constraint is assumed between the atoms

IAT, JAT, and KAT.
IJKL > 0 : If all four are non zero then a dihedral angle
constraint is assumed between them.

6.5 REQ The constrained value for either bondlength, bondangle
or dihedral angle. Bondlengths are in angstroms and angles are
in degrees.

6.6 CONK The force constant for the constrained value
(kcal/mol/Angstrom or kcal/mol/degree).

The input for constraints is terminated by a blank card.

Force field information on the file frcfld: The following section of this document describes the format
of the AMBER Force Field Parameter File. It is not expected that the user will ordinarily modify this
file; rather modifications should ordinarily be entered through the frcmod file described further below.
Of course, major changes, such as using the AMBER/OPLS force field rather than the AMBER one,
would best be made by changing this file. WARNING: multiple entries for the same atom symbols
within a single frcfld or frcmod file can lead to undefined results, e.g. if there are two definitions of
angle energies between atom types A, B and C one of them is picked arbitrarily.

-1 - ITITL
FORMAT (20A4)
ITITL A title for identification of the parameter set.
-2 - **%%% INPUT FOR ATOM SYMBOLS AND MASSES ***%*%*
KNDSYM , AMASS, ATPOL

FORMAT (A2,2X,F10.2x,£10.2)

KNDSYM The unique atom symbol used in the system.
AMASS Atomic mass of the center having the symbol "KNDSYM".
ATPOL The atomic polarizability for each atom (in A**3)

1/30/113

PARM module
NOTE :

- 3 =
JSOLTY (I)
- 4 -
IBT,JBT
RK
REQ
-5 =
ITT,...
TK
TEQ

Page 88

This is the type of polarizability used in sander
and gibbs. No parameters are supplied for this since
the feature is still in development (Amber 4.1).

All the unique atomic symbols and their masses must
be read. The input is terminated by a blank card.

*%%%% INPUT FOR ATOM SYMBOLS THAT ARE HYDROPHILIC *%%%%
JSOLTY (I)
FORMAT (20 (A2, 2X))

The atom symbols which are hydrophilic in solution.
This information is read but not used.

The input is terminated when a blank value is read for
the atom symbol.

%%% INPUT FOR BOND LENGTH PARAMETERS **%
IBT , JBT , RK , REQ

FORMAT (A2,1X,A2,2F10.2)
Atom symbols for the two bonded atoms.

The harmonic force constant for the bond "IBT"-"JBT".
The unit is kcal/mol/ (A**2).

The equilibrium bond length for the above bond in angstroms
The input is terminated by a blank card.
%%% INPUT FOR BOND ANGLE PARAMETERS **%*
ITT , JTT , KTT , TK , TEQ
FORMAT (A2,1X,A2,1X,A2,2F10.2)
The atom symbols for the atoms making an angle.
The harmonic force constants for the angle "ITT"-"JTT"-
"KTT" in units of kcal/mol/(rad**2) (radians are the

traditional unit for angle parameters in force fields).

The equilibrium bond angle for the above angle in degrees.

1/30/113

PARM module

IPT, ...

IDIVF

PK

PHASE

PN

Page 89

The input is terminated by a blank card.

*%%%% INPUT FOR DIHEDRAL PARAMETERS *%*%%%
IPT , JPT , KPT , LPT , IDIVF , PK , PHASE , PN
FORMAT (A2,1X,A2,1X,A2,1X,A2,I4,3F15.2)

The atom symbols for the atoms forming a dihedral

angle. If IPT .eq. 'X ' .and. LPT .eq. ‘X ' then

any dihedrals in the system involving the atoms "JPT" and
and "KPT" are assigned the same parameters. This is
called the general dihedral type and is of the form

"X "-"JPT"-"KPT"-"X ".

The factor by which the torsional barrier is divided.
Consult Weiner, et al., JACS 106:765 (1984) p. 769 for
details. Basically, the actual torsional potential is

(PK/IDIVF) * (1 + cos(PN*phi - PHASE))
The barrier height divided by a factor of 2.

The phase shift angle in the torsional function.
The unit is degrees.

The periodicity of the torsional barrier.

NOTE: If PN .lt. 0.0 then the torsional potential
is assumed to have more than one term, and the
values of the rest of the terms are read from the
next cards until a positive PN is encountered. The
negative value of pn is used only for identifying
the existence of the next term and only the
absolute value of PN is kept.

The input is terminated by a blank card.

*%%%% INPUT FOR IMPROPER DIHEDRAL PARAMETERS *#*#%%%
IPT , JPT , KPT , LPT , IDIVF , PK , PHASE , PN
FORMAT (A2,1X,A2,1X,A2,1X,A2,I4,3F15.2)

The input is the same as in for the dihedrals except that
the torsional barrier height is NOT divided by the factor
idivf. The improper torsions are defined between any four
atoms not bonded (in a successive fashion) with each other
as in the case of "regular" or "proper" dihedrals. Improper
dihedrals are used to keep certain groups planar and to
prevent the racemization of certain centers in the united

1/30/113

PARM module Page 90

atom model. Consult the above reference for details.
Important note: all general type improper dihedrals
(e.g. x -x —-ct-hc) should appear before all
specifics (ct-ct-ct-hc) in the parm list.
Otherwise the generals will override the
specific with no warning.
The input is terminated by a blank card.
- 8 - **%*%%* TNPUT FOR H-BOND 10-12 POTENTIAL PARAMETERS ****%*
KTl , KT2 , A , B , ASOLN , BSOLN , HCUT , IC

FORMAT (2X,A2,2X,A2,2x,5F10.2,1I2)

KT1,KT2 The atom symbols for the atom pairs for which the
parameters are defined.

A The coefficient of the 12th power term (A/(r**12)).
B The coefficient of the 10th power term (-B/(r**10)).
ASOLN Not used

BSOLN Not used

HCUT Not used

IC Not used

-9 - **%%% INPUT FOR EQUIVALENCING ATOM SYMBOLS FOR

THE NON-BONDED 6-12 POTENTIAL PARAMETERS **%%*
IORG , IEQV(I) , I =1, 19
FORMAT (20 (A2, 2X))

IORG The atom symbols to which other atom symbols are to be
equivalenced in generating the 6-12 potential parameters.

IEQV(I) The atoms symbols which are to be equivalenced to the
atom symbol "IORG". If more than 19 atom symbols have
to be equivalenced to a given atom symbol they can be
included as extra cards.

It is advisable not to equivalence any hydrogen bond
atom type atoms with any other atom types.

NOTE: The input is terminated by a blank card.

1/30/113

PARM module Page 91

- 10 - ****%* TNPUT FOR THE 6-12 POTENTIAL PARAMETERS **#*%*%*

LABEL , KINDNB
FORMAT (A4, 6X,A2)

LABEL The name of the non-bonded input parameter to be
used. It has to be matched with "NAMNB" read through
unit 5. The program searches the file to load the
the required non-bonded parameters. If that name is
not found the run will be terminated.

KINDNB Flag for the type of 6-12 parameters.

"SK’ Slater-Kirkwood parameters are input.
see "caution" below.

'RE’ van der Waals radius and the potential well depth
parameters are read.

"AC’ The 6-12 potential coefficients are read.

NOTE: All the non equivalenced atoms’ parameters have to
be given.

The input is terminated when label .eq. ’'END’

CAUTION: the polarizabilities mentioned below are NOT the
polarizabilities used in the sander (min/md) code.
KINDNB ’'SK’' parameters are not currently part of
the AMBER force field. See card 2, ATPOL for sander
polarizability.
- 10A - ***%**% ONLY IF KINDNB .EQ. ’'SK’ ****%
LTYNB , POL , XNEFF , RMIN
FORMAT (2X,A2,6X,3F10.6)

LTYNB Atom symbol.

POL Atomic polarizability for the atom centers having the
the above symbol.

XNEFF Effective number of electrons on the atom centers having
the above symbol.

RMIN van der Waals radius of the atom center having the above
symbol.

1/30/113

PARM module

*kk*k*

***** ONLY IF KINDNB .EQ. 'RE’

LTYNB , R , EDEP
Atom symbol.

The van der Waals radius of the atoms having the symbol

"LTYNB" (Angstoms)
The 6-12 potential well depth. (kcal/mol)
%* ONLY IF KINDNB .EQ. 'AC' ****%

LTYNB , A , C
Atom symbol.
The coefficient of the 12th power term (A/r**12).

The coefficient of the 6th power term (-C/r**6).

Modified force field parameters in file frcmod: This file is normally the one that will be changed by
the user. It consists of a 1-card title, followed by a blank line, then keyword sections. The allowed
keywords (appearing in columns 1-4) are:

MASS

BOND

ANGL

DIHE

IMPR

HBON

NONB

in the
line.

follow this card by card of
unit 10 instructions above.

type - 2 - listed
End with a blank

in the
line.

- 4 - listed
with a blank

follow this card by card of
unit 10 instructions above.

type
End

in the
line.

- 5 - listed
with a blank

follow this card by card of
unit 10 instructions above.

type
End

in the
line.

- 6 - listed
with a blank

follow this card by card of
unit 10 instructions above.

type
End

in the
line.

- 7 - listed
with a blank

follow this card by card of
unit 10 instructions above.

type
End

in the
line.

- 8 - listed
with a blank

follow this card by card of
unit 10 instructions above.

type
End

follow this card by card of type - 10A, B or C - listed

in the unit 10 instructions above. E.g. if you specify
STDA in parm.in for the "regular" parm.dat file, this is

1/30/113

PARM module Page 93

the convention that will be used when reading frcmod.
End with a blank line.

Any or all of the keywords may be missing, if you have no changes for that section. The entire
file can be missing if you have no changes at all to make to the standard force field. Restrictions: note
that you cannot modify the equivalence pattern set up in the standard force field.

If you have parameters in the frcmod file that modify values in the standard parameter file, and if
iparml is set to 2, then both the original and the modified parameters will be printed to the output file.
The modified parameters will be marked with asterisks, and it is these values that will be used in sub-
sequent calculations.

1/30/113

SANDER module Introduction Page 94

SANDER

Usage: sander [-0] -i mdin -o mdout -p prmtop -c inpcrd -r restrt
-ref refc -x mdcrd -v mdvel -e mden -inf mdinfo

—0 Overwrite output files if they exist.

This is a guide to sander, the AMBER module which carries out energy minimization, molecular
dynamics, and NMR refinements. The acronym stands for Simulated Annealing with NMR-Derived
Energy Restraints, but in fact the NMR-related functionality of sander will perhaps most often be used
for things not related to NMR. All of the features of the minmd program from AMBER version 4.0 are
now incorporated here.

The annealing, ‘“weight change,” “restraints” and NMR-specific portions of sander were pri-
marily written by David Pearlman and David Case. All of the AMBER crew listed on the title page
contributed to the general portions; the polarization implementation is that of Jim Caldwell and Liem
Dang.

Parallelism. This is the first version of sander to fully integrate parallel code. In 4.0, an SGI
shared memory version by Roberto Gomperts and Michael Schlenkrich of SGI with assistance from
Thomas Cheatham was distributed on request, as were a message-passing version for the SP1 by
Steven Chin of IBM and a KSR version by David Zirl and Nick Camp. A general PVM version by
Terry Lybrand and Eric Swanson of the University of Washington was included as a separate source
tree in the later 4.0 release. We also had an unreleased version of Steve Debolt’s AMBERCUBE 8
(based on release 3A) that ran on nCube and had been ported to 4.0 on the Intel Paragon by David
Case of Scripps with help from Jerry Greenberg and Jack Rodgers of San Diego Supercomputer Cen-
ter. (George Seibel of UCSF and Tom Darden of NIEHS also had done shared memory versions of
previous releases for Cray and SGI, respectively.)

In 4.1, all message-passing parallel code falls under a generalized MPI interface developed by
Jim Vincent and Ken Merz of Pennsylvania State University, who provided PVM, SPx and T3D ver-
sions. ? (The PVM, etc. message-passing libraries are only used for systems that do not have MPI
implemented.) Thomas Cheatham and David Case helped to integrate, extend, and optimize this work.
The SGI shared memory version from 4.0 was improved by Gomperts and Schlenkrich of SGI, and has
been reorganized and incorporated into the release by Thomas Cheatham. Other credits: Steve Chin
(IBM, SPx optimization), Jeyapandian Kottalam, Mike Page and Asiri Nanayakkara (Cray optimiza-
tion), Michael Crowley (Pittburgh Supercomputer Center, T3D portable namelist port, PME develop-
ment), and Thomas Huber (Ludwig Maximilian Universitact, TCGMSG library). Thomas Huber also

8 DeBolt, S.E. and Kollman, P.A. (1993) J. Comput. Chem. 14,312.

9 “A Highly Portable Parallel Implementation of AMBER 4 Using the Message Passing Interface Standard,” Vincent, J. and Merz,
K.M. (submitted) J.Comput.Chem.

1/30/113

SANDER module Introduction Page 95

added truncated octahedral periodicity to sander.

Farticle Mesh Ewald. The Particle Mesh Ewald (PME) method, implemented originally in
AMBER 3a and contributed by Tom Darden 10 of the NIEHS, is included in this release as an experi-
mental option. The PME method not only provides a better treatment of long range electrostatics (at a
modest computational cost), but can be applied in both rectangular and non-rectangular periodic
boundary simulations.

We have divided this manual into the six sections listed below.

Purpose Sections involved

Simple min/md 1

varying parameters over time 1,2
(simulated annealing)

using internal restraints 34
(including NMR distance & angle constraints)

nmr refinement using NOESY volume restraints 5

nmr refinement using chemical shift restraints 6

If you are just doing "standard" minimization or dynamics, read section one, and ignore the rest. If
you want to carry out simulated annealing, consult section two. Those who wish to carry out simula-
tions while imposing internal coordinate restraints should also read sections three and four. Sections
five and six allow you to add sophisticated penalty functions during NMR refinement. Summarizing:

Sander provides standard protocols for minimization and molecular dynamics, and we use it for
just about everything except free energy calculations. Some of the features are outlined in the follow-
ing paragraphs:

(1) Sander provides direct support for the AMBER and AMBER/OPLS force fields for proteins
and nucleic acids, and for the TIP3 and TIP4 models for water. Other types of restraints can
be applied, and the code allows some variation in functional form as well as in parameters.
These variations include alternate functions for "improper" torsions and Urey-Bradley interac-
tions, so that force fields like that of version 22 of CHARMM can be supported. In addition,
"non-additive" force fields based on atom-centered dipole polarizabilities can be invoked.

(2) The relative weights of various terms in the force field can be varied over time. It is also
straightforward to choose a constant weighting that implements a "geometric" force field, in
which bonds and angles are kept fixed, torsions are free and non-bonded interactions consist
solely of chargeless Van der Waals interactions to prevent steric overlap. This sort of potential
can be useful when major conformational changes are anticipated, or when one is concerned
that errors in the more realistic atomic potentials are biasing the results.

10 ported to AMBER 4.1 by Tom Darden with the assistance of Thomas Cheatham. For citation information and more information
about the method, see the input description in section one of this manual.

1/30/113

SANDER module Introduction Page 96

3)

“4)

&)

(6)

Two periodic imaging geometries are included: rectangular parallelopiped and truncated octa-
hedron (box with corners chopped off). The size of the repeating unit can be coupled to a
given external pressure, and velocities can be coupled to a given external temperature by sev-
eral schemes. The external conditions and coupling constants can be varied over time, so vari-
ous simulated annealing protocols can be specified in a simple and flexible manner.

The user can define internal restraints on bonds, valence angles, and torsions, and the force
constants and target values for the restraints can vary during the simulation. The penalty func-
tion can consist of as many as three types of region: it can be flat between an ‘inner’ set of
upper and lower bounds (called r, and r3); then rise parabolically when the internal coordinate
violates these bounds; and finally, since large violations may lead to excessive parabolic penal-
ties, these parabolas can smoothly turn into linear penalties outside even wider upper and
lower bounds (called r; and r4). The imposition of restraints can be made dependent upon the
distance that residues are apart in the amino-acid sequence, so that much of the functionality of
programs like DISMAN is available.

Internal restraints can be defined to be "time-averaged", that is, restraint forces are applied
based on the averaged value of an internal coordinate over the course of the dynamics trajec-
tory, not only on its current value.

Restraints can be directly defined in terms of NOESY intensities (calculated with a relaxation
matrix technique), scalar coupling constants and proton chemical shifts. There are provisions
for handling overlapping peaks or ambiguous assignments. In conjunction with distance and
angle constraints, this provides a powerful and flexible approach to NMR structural refine-
ments.

In addition to the descriptions of options given below, the user may inspect the files in the

amberdl/demo directory for concrete examples and look in the amber41/Questions directory for dis-
cussions of issues that arise in practice.

We now turn to a description of the files used by sander.

1/30/113

SANDER module Input description Page 97

Files used

Usage: sander [-0] -i mdin -o mdout -p prmtop -c inpcrd -r restrt
-ref refc -x mdcrd -v mdvel -e mden -inf mdinfo

-0 Overwrite output files if they exist.

On VMS systems, files are assigned by Fortran unit number. These unit numbers are also some-
times useful to reference when viewing i/o-related operating system error messages, and are given
below along with a description of each file.

file unit in/out purpose
mdin 5 input control data for the min/md run
prmtop 8 input molecular topology, force field, periodic

box type, atom and residue names

inpcrd 9 input initial coordinates and (optionally)
velocities and periodic box size

refc 10 input (optional) reference coords for position
constraint

mdout 6 output user readable state info and diagnostics

mdinfo 7 output latest mdout-format energy info

restrt 16 output final coordinates, velocity, and box

dimensions if any - for restarting run

mdcrd 12 output coordinate sets saved over trajectory
mdvel 13 output velocity sets saved over trajectory
mden 15 output extensive energy data over trajectory

1/30/113

SANDER module

Input description Page 98

Overview of the contents of mdin

Section

Comments

Format

ONE

TWO

THREE

FOUR

FIVE

SIX

Standard minimization and dy-
namics input

Varying conditions

I/O redirection

Distance and angle restraints

NOESY volume restraints

Chemical shifts restraints

&cntrl namelist

Parameters for changing temperature, restraint
weights, etc. during the MD run. Sometimes
called "weight change lines". Each weight
change line is specified by a separate &wt
namelist specifier, ending with &wt
type='END’, &end. NOTE: the termina-
tion of this section is &rst iat=0, &end at
the end of section FOUR. /.e. without an explicit
section THREE or section FOUR, you must use
this line if you want a group specification fol-
lowing this one to be read properly.

TYPE=filename lines. Optional. Section ends
with the first non-blank line which does not cor-
respond to a recognized redirection.

Multiple &rst namelists; if a DISANG=file-
name redirection was given in TWO, these are
read from filename instead of mdin. One &rst
definition is given per restraint. Section FOUR
is terminated by &rst iat=0, &end.

Read only if NMRMAX= 2 or 3. If a NOE-
EXP=filename was given in TWO, these are
read from filename instead of mdin. Defines
molecular subgroups. Each definition consists
of one &noeexp namelist followed by the
group cards defining the subgroup. Ended by
&noeexp npeak(l)=-1, &end.

Read only if NMRMAX= 3 or 4. If a
SHIFTS=filename was given in TWO, these are
read from filename instead of mdin. Exactly one
&shf namelist must be provided for this sec-
tion.

1/30/113

SANDER module Input section ONE Page 99

SECTION ONE: General minimization and dynamics parameters

Each of the variables listed below is input in a namelist statement with the namelist identifier
&cntrl. You can enter the parameters in any order, using keyword identifiers. Variables that are not
explicitly listed retain their default values. Support for namelist input is included in almost all current
Fortran compilers, and is a standard feature of Fortran 90. In addition, a "portable" namelist imple-
mentation, written in Fortran by N.H.F. Beebe, is included, to allow namelist input on (almost) all
machines. This "portable" version is actually an improvement over most native implementations,
because it gives better error messages in case of problems. A detailed description of the namelist con-
vention is given in Appendix B.

In general, namelist input consists of an arbitrary number of comment cards, followed by a
record whose first 7 characters after a ‘&’ (e.g. " &cntrl ") name a group of variables that can be
set by name. This is followed by statements of the form " maxcyc=500, diel=2.0, ... ",
and is concluded by an " &end " token. The files in the demo directory contain examples of this for-
mat. The first ‘card’ or line of input contains a title, which is then followed by the &cntrl namelist.
Note that the first character on each line of a namelist block must be a blank.

A simple input file

Sample input file : just a few steps of minimization.
[minimize for 50 cycles, print results every 10 steps]

&cntrl
imin=1, maxcyc=50, ntpr=10, scee=2.0,
&end
Input parameters
General flags describing the calculation
TIMLIM Time limit, in seconds, for the job. Default 999999.
IMIN Flag to run minimization
=0 No minimization (only do molecular dynamics; default)
=1 Perform minimization (and no molecular dynamics)

1/30/113

SANDER module

NMRMAX

NTX

IREST

NTRX

Input section ONE Page 100
= no nmr-type analysis will be done; default
>0 NMR restraints/weighting changes will be read
=2or3 NOESY volume restraints will be read as well
=3 or4 chemical shift restraints will also be read
Nature and format of the input
Option to read the initial coordinates, velocities and box size from the "inpcrd" file

(also see INIT). The options 1-2 must be used when one is starting from mini-
mized or model-built coordinates. If an MD restrt file is used as inpcrd, then
options 4-7 may be used. Note: BOX (the periodic box lengths) is written to the
restrt file in periodic boundary runs. If NTB.gt.0 (a periodic boundary run) and
NTX.It.6, the box sizes in the prmtop are used; otherwise, the box sizes from the
inpcrd (MD restrt) file will be used. This enables one to use the last box from the
constant pressure regime when switching to constant volume runs.

=1 X is read formatted with no initial velocity information (default)
=2 X is read unformatted with no initial velocity information

=4 X and V are read unformatted.

=5 X and V are read formatted.

=6 X,V and BOX(1..3) are read unformatted.

=7 X, V and BOX(1..3) are read formatted.

Flag to restart the run.

=0 No effect (default)

=1 restart calculation (i.e. read restart time and set INIT= 4. Requires veloc-
ities in coordinate input file, so you also may need to reset NTX if restart-
ing MD)

Format of the cartesian coordinates for restraint from file "refc". Note: the pro-
gram expects file "refc" to contain coordinates for all the atoms in the system. A
subset for the actual restraints is selected by the GROUP input which follows.

=0 Unformatted (binary) form

=1 Formatted (ascii, default) form

1/30/113

SANDER module Input section ONE Page 101

Nature and format of the output

NTXO Format of the final coordinates, velocities, and box size (if constant volume or
pressure run) written to file "restrt".

=0 Unformatted
=1 Formatted (default).
NTPR Every NTPR steps energy information will be printed in human-readable form to

files "mdout" and "mdinfo". "mdinfo" is closed and reopened each time, so it
always contains the most recent energy and temperature. Default 50.

NTWX Every NTWX steps the coordinates will be written to file "mderd". NTWX=0
inhibits all output. Default 0.

NTWV Every NTWYV steps the velocities will be written to file "mdvel". NTWV=0
inhibits all output. Default 0.

NTWE Every NTWE steps the energies and temperatures will be written to file "mden" in
compact form. NTWE=0 inhibits all output. Default 0.

NTWXM The maximum number of steps that NTWX is active. At this number of steps no
more trajectories will be written to file "mdcrd". Set this to O to disable the limit.

NTWVM Analogous to NTWXM for velocities. 0 to disable.
NTWEM Analogous to NTWXM for energies. O to disable.
IOUTFM Format of velocity, coordinate, and energy sets
=0 Formatted (default)
=1 Binary
NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the size of

the coordinate / velocity archive files, by only including that portion of the system
of greatest interest. (E.g. one can print only the solute and not the solvent, if so
desired).

Coord/velocity archives will include:

1/30/113

SANDER module

NTF

NTB

Input section ONE Page 102

= all atoms of the system (default).
<0 only the solute atoms.
>0 only atoms 1->NTWPRT.

Potential function

Force evaluation. Note: If SHAKE is used (see NTC), it is not necessary to calcu-
late forces for the constrained bonds.

=1 complete interaction is calculated (default)

=2 bond interactions involving H-atoms omitted (use with NTC=2)

=3 all the bond interactions are omitted (use with NTC=3)

=4 angle involving H-atoms and all bonds are omitted

=5 all bond and angle interactions are omitted

=6 dihedrals involving H-atoms and all bonds and all angle interactions are
omitted

=7 all bond, angle and dihedral interactions are omitted

=8 all bond, angle, dihedral and non-bonded interactions are omitted

Periodic boundary. If NTB .EQ. O then a boundary is NOT applied regardless of
any boundary condition information in the topology file. The value of NTB speci-
fies whether constant volume or constant pressure dynamics will be used. Options
for constant pressure are described in a separate section below.

=0 no periodicity is applied (default)
=1 constant volume

=2 constant pressure

If NTB .NE. 0, there must be a periodic boundary in the topology file. Constant
pressure is not used in minimization (IMIN=1, above).

For a periodic system, constant pressure is the only way to equilibrate density if
the starting state is not correct. For example, the solvent packing scheme used in
EDIT can result in a net void when solvent molecules are subtracted which can
aggregate into ‘vacuum bubbles’ in a constant volume run. Another consideration
is box shrinkage under constant pressure, which if the solute clearance has been
chosen too close to the cutoff distance can result in solvent molecules ‘seeing’
parts of the solute in opposite directions (not desirable if one believes that less cor-
related interactions are significantly more like simulations in free solution). The
remedy for this is to allow enough margin when building the box.

1/30/113

SANDER module

IDIEL

DIELC

CUT

NTNB

NSNB

NTID

Input section ONE Page 103

For a 7682-atom system, ! constant volume uses about 45% more computing time

than having no periodicity (because of the additional atom pairs across the periodic
boundary). For this DNA system, constant pressure uses about 30% more time
than constant volume (because of the work involved in scaling the box).

Type of dielectric function to be used in calculating the electrostatic energy.

=0 distance dependent dielectric function. This is used to mimic the presence
of a high dielectric solvent, typically for simulating water when no
explicit water is present.

=1 constant dielectric function. This is used when there is explicit solvent
(e.g. water) in the calculation, or for a true gas phase calculation. Default.

Dielectric multiplicative constant for the electrostatic interactions. If DIELC .le.
0.0 then DIELC = 1.0. DIELC and IDIEL are coupled. For example to obtain a
dielectric constant of 4rij set DIELC=4 and IDIEL=0. Default 1.0.

The primary cutoff distance for non-bonded interactions. CUT should be no more
than half the shortest BOX dimension in order to maintain spherical symmetry in
the nonbonded potential. Note that AMBER only uses a residue-based cutoff.
This means that if any atom of one residue is within CUT of any atom of another
residue, every atom in each residue will see every atom of the other residue. This
is done to avoid splitting the residue dipoles. The average effective cutoff is thus
increased by the average residue diameter. Default 8.0.

Non-bonded pair list.

=0 no pair list will be generated and no nonbonded interactions are calcu-
lated.
=1 Normal behavior (default; recommended).

After NSNB steps the non-bonded pair list will be updated. It is recommended
that the pairlist be updated every 25fs, but for very mobile systems or when short
cutoffs are used it may be necessary to update the pairlist more frequently. If the
nonbonded cutoff is larger than the system size (ie, no cutoff), you should set
NSNB to a large value so that the pairlist is only constructed once. Default 25.

Water pairlist method.

=0 In periodic systems the water pairlist is generated from oxygen coordi-
nates. Default and recommended.

11 A 274-atom DNA hexamer with counterions in a 45 & box of water (built with 10.5 & solute clearance) using an 8 A cutoff.

1/30/113

SANDER module

SCNB

SCEE

CUT2ND

ICHDNA

ISFTRP

Input section ONE Page 104

=86 pairlist generated on residue basis from atom coordinates. I.e. if any pair
of atoms in different waters is within the cutoff, all the interactions
between the 2 waters are used. This yields an effective cutoff distance
that is somewhat longer than that specified in CUT. This option may be
extremely slow and is provided only for comparison to old runs.

1-4 vdw interactions are divided by SCNB. Default 2.0.

1-4 electrostatic interactions are divided by SCEE; the 1991 and previous force
fields used 2.0, while the 1994 force field uses 1.2. No default; must be set.

An (optional) secondary cutoff. If CUT2ND > 0.0, then at every nonbonded update
(every NSNB steps), the energies and forces due to interactions in the range CUT<
Rij <= CUT2ND will be determined. These energies and forces will be added to
the non-bonded interactions within CUT distance at every timestep. The idea is
that long-range interactions change more slowly than short range interactions, and
thus this dual cutoff method allows one to include longer-range information at only
a moderate additional cost. Default 0.0.

Option to modify the charge of end hydrogens. This is useful for "in vacuo" simu-
lations of RNA and DNA. Without this option, energy minimization calculations
on nucleotides will result in bonding between the 5° and 3’ hydrogens and the cor-
responding phosphate groups. This option transfers the charge from H5’ to OS5’ so
that the hydrogen on the end is neutral.

0 no charge modification (default)

=1 modify charge

The "soft repulsion" option

=0 No "soft repulsions" (default).

If ISFTRP > 0, a "soft" repulsion-only potential term will be used in place of the
standard 6-12 potential. This term has the form

E=K _(r?-r?? for r<r

rep * o
E=0 forr>r0

where r_ is the sum of the van der Waals radii of the interacting atoms, r is their
interatomic distance, and Krep is a force constant. This type of potential has shown
some usefulness in improving the efficiency of restrained refinement using MD.

=1 The standard 10-12 potential will still be used for interactions between
hydrogen bonding atoms, rather than the "soft" repulsion-only term.

1/30/113

SANDER module Input section ONE Page 105

>=2 The soft-repulsion term will replace the 10-12 term for hydrogen bonds,
as well.
RWELL Default 0.0. If ISFTRP >0, RWELL gives the initial value of Krep. All interactions

use the same value of Krep, which can be changed using the SOFTR option in the
NMR control file (see below).

[Note: If, in the force field, either epsilon or I for an atom is specified to be zero,

that atom will not contribute to the vdw potential energy. This is always true,
regardless of the values of ISFTRP or RWELL]

Caution: Note that the van der Waals radii in the "standard" force field may not be
what you want for soft repulsion. In particular, the atom type HC (hydrogen
bonded to carbon) has a large value for r* (1.54 A) and a very small value for the
well depth (0.01 kcal/mol). This results in a relatively weak repulsive wall, but
will not translate well into a soft repulsion. You will probably want to use a fic-
mod file to reduce this radius to something more like 1.0 A. You may wish to
modify other radii as well. Some useful information about this (for proteins) is in
"Calibration of effective van der Waals atomic contact radii for proteins and pep-
tides", by lijima, Dunbar and Marshall, Proteins: Str. Funct. Gen. 2, 330-339
(1987).

Note also that the RSTAR weight function (described below) can be used to modify
all of the radii by a constant amount. For example, if you want the repulsive force
to begin where the 6-12 potential crosses zero (rather than at the minimum), set
RSTAR to (1/2)**(1/6), or about 0.8909.

Polarizable potentials

IPOL Inclusion of polarizabilities in the force field.
=0 non polar calc (default).
=1 turn on polarization calculation. Polarizabilities must be present in prm-
top; see PARM.
=2 Polarization calculation + read and use 3-body interaction definitions

Note: polarization is expensive and is currently recommended ONLY for
investigation of polarization parameters.

N3B Number of three-body interactions to be defined; current maximum is 5.

NION Number of ions in the system.

1/30/113

SANDER module Input section ONE Page 106

AT1(I) The second atom in this 3-body interaction.

AT2(D) The third atom in this 3-body interaction.

ACON() The pre-exponential factor for this 3-body interaction.
BETA3(I) The beta value for this 3-body interaction.

GAMMA3() The gamma value for this 3-body interaction.

Frozen or restrained atoms

IBELLY Flag for belly type dynamics.

=0 No belly run (default).

=1 Belly run. A subset of the atoms in the system will be allowed to move,
and the coordinates of the rest will be frozen. The moving atoms are spec-
ified in Group format at the end of all other input from file "mdin". Group
input is described in the Appendix.

NTR Flag for restraining specified atoms in Cartesian space using a harmonic potential.
Note: the restrained atoms are read in GROUP format after the numeric input from
file "mdin" - see Appendices for GROUP. The coordinates are read in "restrt" for-
mat from the "refc" file (see NTRX, above).

=0 No position restraints (default)

=1 MD with restraint of specified atoms

1/30/113

SANDER module

MAXCYC

NCYC

NTMIN

DXO0

DXM

DRMS

NRUN

NSTLIM

NDFMIN

Input section ONE Page 107

Energy minimization

Maximum number of cycles of minimization. Default 1.

After NCYC cycles the method of minimization would be switched from steepest
descent to conjugate gradient method. Default 10.

Flag for the method of minimization.

=0 Full conjugate gradient minimization. The first 10 cycles are steepest
descent at the start of the run and after every nonbonded pairlist update.

=1 For NCYC cycles the steepest descent method is used then conjugate gra-
dient is switched on (default).

=2 Only steepest descent method is used.

The initial step length. If the initial step length is big then the minimizer will try to
leap the energy surface and sometimes the first few cycles will give a huge energy,
however the minimizer is smart enough to adjust itself. Default 0.01.

The maximum step length allowed. Default 0.5.

Convergence criterion for norm of the gradient of the energy. If the difference in
the norm of the gradient for successive steps is within DRMS then optimization is
complete. Default 1.0E-4 kcal/mole A.

Molecular dynamics

Number of MD-runs of NSTLIM steps to be performed. Since the restart coordi-
nates are written only at the end of each "run", it is sometimes advisable to break a
long MD calculations into several "runs". The number of picoseconds of molecu-
lar dynamics is equal to the product of NRUN x NSTLIM x DT. Default 1.

Number of MD-steps per NRUN to be performed. Default 1.

Number of degrees of freedom that will be subtracted from the total number of
degrees of freedom. If either NTCM or NSCM .NE. 0 then this option should be
set equal to 6. Otherwise, NDFMIN should be 0. NDFMIN, NTCM, and NSCM
are ignored for belly dynamics. Default 0.

1/30/113

SANDER module

NTCM

NSCM

INIT

DT

TEMPO

TEMPI

IG

Input section ONE Page 108

Flag for the removal of translational and rotational motion at the beginning of the
simulation.

=0 The translational and rotational motion about the center of mass is not
removed (default)

=1 The above motion is removed one time at the beginning of the simulation.

Flag for the removal of translational and rotational motion at regular intervals.
After every NSCM steps, translational and rotational motion will be removed.
This flag is ignored for both belly and periodic simulations. Default 0.

Flag for different starting procedures. If option NTX is less than 4, INIT should be
equal to 3. If option NTX is greater than or equal to 4, this option should be equal
to 4.

=3 Generate starting velocities (NTX = 1 or 2). V(T-DT/2) is obtained by
calculating force(T) unless TEMPI .gt. 1e-6, in which case the velocities
are assigned from a Maxwellian at TEMPI K. Default.

=4 Use input velocities (NTX >= 4). V(T-DT/2) is read from the input file
"inpcrd".

The time at the start (psec) this is for your own reference and is not critical. Start
time is taken from the coordinate input file if IREST=1. Default 0.0.

The time step (psec). Recommended MAXIMUM is .002 if SHAKE is used, or
001 if it isn’t. Note that for temperatures above 300K, the step size should be
reduced since greater temperatures mean increased velocities and longer distance
travelled between each force evaluation, which can lead to anomalously high ener-
gies and system blowup. Default 0.001.

Temperature regulation

Reference temperature at which the system is to be kept. Note that for tempera-
tures above 300K, the step size should be reduced since increased distance trav-
elled between evaluations can lead to SHAKE and other problems. Default 300.

Initial temperature. For the initial dynamics run, (NTX .It. 3) the velocities are
assigned from a Maxwellian distribution at TEMPI K. If TEMPI = 0.0, the veloci-
ties will be calculated from the forces instead. TEMPI has no effect if NTX .gt. 3.
Default 0.0.

The seed for the random number generator. The MD starting velocity is dependent
on the random number generator seed if NTX .1t. 3 .and. TEMPI .ne. 0.0. Default

1/30/113

SANDER module

HEAT

NTT

Input section ONE Page 109

71277.

If ABS(HEAT) .GE. 1.0E-06, all the velocities are multiplied by HEAT. This only
affects the initial velocities assigned at TEMPI. Default 0.0.

Switch for temperature scaling.

Note that some of the following options are rather ad-hoc, and may not result in a
thermodynamically relevant ensemble. However, they may be useful when using
MD strictly to sample conformational space, such as with simulated annealing and
nmr refinement — cases where the temperature of the system may be too unstable
to use standard coupling scheme. In particular, option NTT=4 may be useful in
such cases. Coupling schemes NTT=0,1 or 5 should be used when generating a
thermodynamic ensemble is crucial.

=0 Constant total energy classical dynamics. Velocities are never rescaled
after the start of the simulation except at the end of every NSTLIM steps,
when they will be rescaled to the target temperature if the current temper-
ature deviates from TEMPO by more than DTEMP. Default, but owing to
the "hard" cutoff that lacks a switching function, energy will not be con-
served unless the cutoff includes the whole system.

=1 Constant temperature, using the Berendsen coupling algorithm (Berend-
sen et al. J. Chem. Phys., 81, 3684 (1984)). A single scaling factor is used
for all atoms. This is good for small solutes, e.g. methane, but can result
in cold solute for larger ones. See NTT=5.

=2 Constant temperature, using Berendsen coupling algorithm. But only con-
sider the solute temperature in determining the velocity scaling factor on
each step. Could result in solvent atoms having very high temperature,
and is not recommended for most cases.

=3 Constant temperature, using Berendsen algorithm. But only rescale when
the temperature deviates from TEMPO by more than DTEMP. Single
scaling factor.

=4 Any time temperature deviates from TEMPO by more than DTEMP, do
one quick scale of the velocities to bring them back to TEMPO. Other-
wise, do not scale.

=5 Berendsen algorithm, use separate scaling factors for atoms of the solute
and atoms of the solvent. This option is recommended as a replacement
for NTT=1, and can help alleviate the "cold solute/hot solvent" problem.

<-1 Re-assign random velocities for all atoms whenever the current tempera-
ture deviates by more than DTEMP from TEMPO (target temperature),
and every ABS(NTT) steps. Velocities are assigned in a Maxwellian dis-
tribution.

=1 Re-assign random velocities for all atoms whenever the current tempera-
ture deviates by more than DTEMP from TEMPO. Velocities are assigned
in a Maxwellian distribution.

1/30/113

SANDER module

ISOLVP

DTEMP

TAUTP

TAUTS

VLIMIT

Input section ONE Page 110

NOTE 1: When option (5) is chosen, both the solute and solvent coupling
constants are used (TAUTP and TAUTS, respectively). In cases (1), (2),
and (3), the single temperature coupling constant TAUTP is used for all
atoms.

NOTE 2: If you are using NTT=2 or NTT=5, you can specify the variable
ISOLVP to redefine the last_solute_atom pointer. See below.

Last-solute-atom pointer to be used with temperature scaling, when separate scal-
ing of solute and solvent atoms has been requested (NTT=2 or NTT=5).

By default (ISOLVP=0), the last non-TIP3P water molecule in the system is gener-
ally taken as the last_solute_atom. For example, the counterions are considered
part of the "solute" by default. You could re-define the counterions to be part of
the solvent by setting ISOLVP.

For NTT = 0, if the difference between the system temperature and TEMPO is
more than DTEMP at the end of each run, the velocities will be linearly scaled to
TEMPO. Default 0.0.

Time constant for heat bath coupling for the SOLUTE. Default 0.2.

NOTE: Users familiar with AMBER 3.0 or 3.0a will find a significant difference in
the behavior of these options since the coupling is now 20.455 times looser than
amber3a and previous versions.

Generally, values for TAUTP should be in the range of 0.1-0.4ps, with a smaller
value providing tighter coupling to the heat bath, therefore a less natural trajectory.
Values of TAUTP less than 0.1 result in smaller fluctuation in kinetic energy, but
larger fluctuation in the total energy. Values much larger than the length of the
simulation result in a return to constant energy conditions.

Time constant for the heat bath coupling for the SOLVENT (NTT=5). Default 0.2.

If .ne. 0.0, then any component of the velocity that is greater than abs(VLIMIT)
will be reduced to VLIMIT (preserving the sign). This can be used to avoid occa-
sional instabilities in molecular dynamics runs. VLIMIT should be set (if at all) to
a value like 20., which is well above the most probable velocity in a Maxwell-
Boltzmann distribution at room temperature. A warning message will be printed
whenever the velocities are modified. Runs that have more than a few such warn-
ings should be carefully examined. Default 0.0.

1/30/113

SANDER module

TAUVO

TAUV

VZERO

NTP

PRESO

COMP

Input section ONE Page 111

PEACS temperature algorithm

PEACS is a searching technique wherein the trajectory follows a constant energy
contour. See Schaik et al, J. Comp. Aided Mol. Design, 6, 97 (1992). PEACS can
only be carried out using MD (not minimization).

Defines the rate constant for lowering the temperature if a PEACS constant poten-
tial energy search is to be carried out.

=00 No PEACS search will be carried out (default).

>0.0 TAUVO defines the rate at which the target energy contour is annealed
down.

When a PEACS search is being carried out (TAUVO > 0.0), TAUV defines the cou-
pling constant between the target energy contour and the contour being followed.
Default 0.1.

Defines the value of the initial potential energy contour to be followed if a PEACS
search is being carried out. If VZERO is specified as 0.0 (default), the initial
energy of the system will be used.

Pressure regulation

Pressure regulation only applies when Constant Pressure periodic boundary condi-
tions are used (NTB = 2).

Flag for constant pressure dynamics. This option MUST be set to 1 or 2 when
Constant Pressure periodic boundary conditions are used (NTB = 2).

=0 Used with NTB not = 2 (default)
=1 md with isotropic position scaling

=2 md with anisotropic diagonal (x-,y-,z-) position scaling

Reference pressure (in units of bars, where 1 bar ~ 1 atm) at which the system is
maintained (when NTP > 0). Default 1.0.

compressibility of the system when NTP > 0. The units are in 1.0E-06/bar; a value
of 44.6 (default) is appropriate for water.

1/30/113

SANDER module

TAUP

NPSCAL

NTC

TOL

Input section ONE Page 112

Pressure relaxation time when NTP > 0. The recommended value is between 0.1
and 1.0 psec**-1. Default 0.2.

Method for pressure scaling of the atomic coordinates. Pressure scaling means
changing the size of the box to match the target pressure, which involves scaling
the positions of the contents of the box so that they are proportionally distributed
within the new box size. For example if the box contracts, the system as a whole
must be contracted to avoid overlaps at the periodic boundary, and if the box
expands, the system is expanded uniformly to fill the vacuum at the edge(s).

=0 Atom scaling. All atoms are independently moved according to the scale
factor. This causes some degree of compression or stretching of bonds.
Default.

=1 Molecule scaling. Bonded groups of atoms (molecules) are moved as

units. This is intended to avoid changing bond lengths as a side effect of
pressure scaling, but may disrupt coordination of extended contacting
molecules such as nucleic acid strands.

SHAKE bond length constraints

Flag for SHAKE to perform bond length constraints. SHAKE is used in the TIP
water potentials and keeps waters rigid so that the hydrogens (which have 0 vdw
radius) do not extend beyond the vdw sphere defined for the oxygens. For energy
minimization, no SHAKE should be necessary, unless electrostatic energies blow
up (negatively) in a water bath. If both problems affect a minimization with peri-
odic boundary conditions, increasing the box dimension at the end of the prmtop
file by 0.2-0.8 Angstroms may help. The SHAKE option should be used for most
MD calculations. The size of the MD timestep is determined by the fastest
motions in the system. SHAKE removes the bond stretching freedom, which is the
fastest motion, and consequently allows a larger timestep to be used.

=1 SHAKE is not performed (default)
=2 bonds involving hydrogen are constrained
=3 all bonds are constrained

Relative geometrical tolerance for coordinate resetting in shake. Recommended
maximum: <0.0005 Angstrom Default 0.0005.

1/30/113

SANDER module

IMGSLT

IFTRES

JFASTW

Input section ONE Page 113

Special water treatment

Controls Solute-Solvent imaging in periodic boundary calculations.

=0

=1

Solute is imaged with solvent. Solute is allowed to interact with solvent
images (if they are within CUT). Default.

No Solute-Solvent imaging. Solute does not see image solvent. This
assumes that the solute is centered in the periodic system, and is not free
to migrate. Do not use this with mobile solutes. This option is mainly
useful for large solutes.

Flag to remove the nonbonded cutoff from the solute in periodic boundary simula-

tions.

=0

ALL intramolecular solute - solute nonbonded interactions are calculated
regardless of whether the interatomic distance is greater than the non-
bonded cutoff. Solute-solute imaging is turned off.

Nonbondeds are evaluated normally. Default.

NOTE: For simulations of highly charged solutes in a water bath, it can be
useful to calculate ALL solute - solute nonbonded interactions in order to
reduce electrostatic problems. This is especially important for highly
charged systems like nucleic acids. Note that this option is intended for
small solutes, and will generate many more nonbonded pairs than the nor-
mal method if the solute is large. Counterions added in EDIT are consid-
ered part of the solute.

Fast water definition flag. By default, the system is searched for TIP3P waters, and
special fast routines are used for these molecules. There are two types of fast rou-
tines specific to TIP3P water: 1) A faster, analytic SHAKE algorithm for 3-point
water; 2) A faster routine to calculate non-bonded TIP3P-TIP3P water interactions.
In normal operation, the program defaults will be acceptable. However, in rare
instances (e.g. for debugging purposes, or when the user has redefined the defini-
tion of a TIP3P water), one may wish to inhibit the use of these fast routines and/or
redefine the default definition used in Amber to define TIP3P waters. This option
makes this possible.

=0

=1

Normal operation. The default AMBER definition of TIP3P water is used,
and the fast water routines are used where appropriate.

Use the fast water routines for SHAKE and non-bonds, but redefine the
names the program uses to recognize TIP3P waters. The redefinition
names are provided below.

1/30/113

SANDER module

WATNAM
OWTNM

HWTNMI1
HWTNM2

IVCAP

MATCAP

FCAP

Input section ONE Page 114

=2 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds.

=3 Use the fast water routine for SHAKE. Do not use the fast water routine
for non-bonds. Redefine the names the program uses to recognize TIP3P
waters. The redefinition names are provided below, after the normal

=4 Do not use fast water routines for either SHAKE or non-bonds.

The following variables allow redefinition of the default residue and atom names
used by the program to determine which residues are TIP3P waters. Except in
unusual circumstances, the default water names should be acceptable.

The residue name the program expects for TIP3P waters. Default "WAT °.
The atom name the program expects for the oxygen of TIP3P wat. Default 'O ’
The atom name the program expects for the 1st H of TIP3P wat. Default "H1 °.

The atom name the program expects for the 2nd H of TIP3P wat. Default "H2 °.

Water "cap"

Flag to control Cap Option. The Cap refers to a spherical portion of water centered
on a point in the solute and restrained by a soft half-harmonic potential. Caps are
constructed using EDIT.

=0 Cap will be in effect if it is passed from the the parm module (default)
=1 Cap will be activated except that the Cap atom pointer will be modified
=2 Cap will be inactivated

The Cap atom pointer. This is the last Non-Cap atom number. If IVCAP =1 then
the pointer passed from the PARM module will be overwritten by this number.
PARM passes the NATCAP parameter which is replaced by the value in MATCAP.
Default 0.

The Force Constant for the Cap restraint potential. A value of 0.0 for FCAP will
result in the default force constant of 1.5.

1/30/113

SANDER module Input section ONE Page 115

NMR refinement options

ISCALE Number of additional variables to optimize beyond the 3N structural parameters.
(Default = 0). At present, no options other than ISCALE = 0 are supported (see
code).

NOESKP The NOESY volumes will only be evaluated if mod(nstep, noeskp) = 0; otherwise

the last computed values for intensities and derivatives will be used. (default =1,
i.e. evaluate volumes at every step)

IPNLTY

=1 the program will minimize the sum of the absolute values of the errors;
this is akin to minimizing the crystallographic R-factor (default).

=2 the program will optimize the sum of the squares of the errors.
=3 For NOESY intensities, the penalty will be of the form
awt [1VO _ (1O
c o *

Chemical shift penalties will be as for ipnlty=1.

MXSUB Maximum number of submolecules that will be used. This is used to determine
how much space to allocate for the NOESY calculations. Default 1.

SCALM "Mass" for the additional scaling parameters. Right now they are restricted to all
have the same value. The larger this value, the slower these extra variables will
respond to their environment. Default 100 amu.

PENCUT In the summaries of the constraint deviations, entries will only be made if the
penalty for that term is greater than PENCUT. Default 0.1.

TAUSW For noesy volume calculations (NMRMAX = 2 or 3), intensities with mixing times
less that TAUSW (in seconds) will be computed using perturbation theory, whereas
those greater than TAUSW will use a more exact theory. See the theory section
(below) for details. To always use the "exact" intensities and derivatives, set
TAUSW = 0.0; to always use perturbation theory, set TAUSW to a value larger
than the largest mixing time in the input. Default is TAUSW of 0.1 second, which
should work pretty well for most systems.

1/30/113

SANDER module Input section ONE Page 116

Particle Mesh Ewald

This is an experimental option and is not fully tested!

IEWALD Turns on the Particle Mesh Ewald (PME) method. PME 12 is a fast implementa-
tion of the Ewald summation method !3 for calculating the full electrostatic energy
of a unit cell (periodic box) in a macroscopic lattice of repeating images. As
implemented, the PME in AMBER bypasses the standard pairlist creation and non-
bonded energy and force evaluation, calling special PME functions to calculate the
Lennard-Jones and electrostatic interactions. The PME method is fast since the
reciprocal space Ewald sums are B-spline interpolated on a grid and since the con-
volutions necessary to evaluate the sums are calculated via fast Fourier transforms.
Note that the accuracy of the PME is related to the density of the charge grid
(NFFTX, NFFTY, and NFFTZ), the spline interpolation order (SPLINE_ORDER),
and the direct sum tolerance (DSUM_TOL); see the descriptions below for more
information. This is an experimental option since the standard AMBER routines
are bypassed, the code has not been verified on all architectures, the code has not
been verfied to work properly under all possible sander input options, and finally
since the method is still under active development.

=0 PME is turned off. This is the default option.

=1 PME is turned on. This requires extra input in order to control the calcu-
lation. This input, consisting of three lines of free format numerical input
(not namelist input!), is described below and must be placed in the input
file just after the end of this namelist (&cntrl &end) [or after the for-
matted input] and before any weight change information (&wt &end)
described in the next section and/or before the group input information.

Special input: only processed when IEWALD = 1.

Line 1 The unit cell parameters: BOXX, BOXY, BOXZ, ALPHA, BETA and GAMMA.
All are double precision free format input.

BOXX, BOXY, BOXZ
The PME unit cell (periodic box) lengths (A) in each dimension. This
information must be specified and overrides the box information specified
in the parm file. When NTX = 7 (used to read in the velocity and box
information upon restart) this information is read, but ignored, and the
unit cell information is obtained from the restart file.

ALPHA, BETA, GAMMA
The PME unit cell angles (in degrees). Unlike standard AMBER, PME
allows non-rectangular boxes. [A rectangular box has angles of 90.0.]

12 (a) Darden, T.A ; York, D. and Pedersen L. ““Particle Mesh Ewald: An N log(N) method for Ewald sums in large systems.” J. Chem.
Phys. 98, 10089 (1993). (b) Darden, T.A. (under preparation).

13 Bwald, P. (1921) Ann. Phys. (Leipzig) 64, 253.

1/30/113

SANDER module

Line 2

Input section ONE Page 117

When NTX = 7, ALPHA, BETA and GAMMA are obtained from the
restart file. If the restart file doesn’t contain these values (for example if
restarting from standard, non PME, periodic boundary conditions),
ALPHA, BETA and GAMMA will default to 90.0 degrees.

Interpolation and control information: NFFT1, NFFT2, NFFT3, SPLINE_ORDER,
ISCHARGED, VERBOSE, EXACT_EWALD. All are integer free format input.

NFFTX, NFFTY, NFFTZ

These give the size of the charge grid (upon which the reciprocal sums are
interpolated) in each dimension. Higher values lead to higher accuracy
(when the DSUM_TOL is also lowered) but considerably slow the calcu-
lation. Generally it has been found that reasonable results are obtained
when NFFTX, NFFTY and NFFTZ are approximately equal to BOXX,
BOXY, and BOXZ respectively, leading to a grid spacing
(BOXX/NFFTX, etc) of 1.0 A. Significant performance enhancement in
the calculation of the fast Fourier transform is obtained by having each of
the integer NFFTX, NFFTY and NFFTZ values be a product of powers of
2,3,and 5.

SPLINE_ORDER

The order of the B-spline interpolation. The higher the order, the better
the accuracy (unless the charge grid is too coarse). The minimum order is
3. An order of 4 implies a cubic spline approximation which is a good
standard value. Note that the cost of the PME goes as roughly the order to
the third power.

ISCHARGED

Standard use is to have ISCHARGED = 0 which forces neutralization of
the unit cell by removal of the average charge over the system at the
beginning of the run. [This is necessary due to the roundoff error associ-
ated with the parm derived charges (upon reading in a parameter file, the
sum of the charges for a neutral system does not sum to zero).] When
ISCHARGED = 1, the unit cell is not neutralized. Technically, the Ewald
summation method is not correct when a non-neutral system is used
(energy will change, independent of the direct sum tolerance, but the
forces are still correctly determined). However, the method has been
applied for non-neutral systems and may be useful for equilibrating sys-
tems in the absence of counterions, for example.

VERBOSE

Standard use is to have VERBOSE = 0. Turning VERBOSE = 1 leads to
voluminous output of information about the PME run.

EXACT_EWALD

Standard use is to have EXACT_EWALD = 0 which turns on the particle
mesh ewald (PME) method. When EXACT_EWALD = 1, instead of the

1/30/113

SANDER module Input section ONE Page 118

Line 3

approximate, interpolated PME, an exact Ewald calculation is run. The
exact Ewald summation is present to serve as an accuaracy check allow-
ing users to determine if the PME grid spacing, order and direct sum toler-
ance lead to acceptable results. Although the cost of the exact Ewald
method formally increases with system size at a much higher rate than the
PME, it is faster for small numbers of atoms (< 500). For larger, macro-
molecular systems, with > 500 atoms, the PME method is significantly
faster.

The direct sum tolerance: DSUM_TOL. This is a double precision free format
value.

DSUM_TOL

This relates to the width of the direct sum part of the Ewald sum, requir-
ing that the value of the direct sum at the Lennard-Jones cutoff value
(specified in CUT as during standard dynamics) be less that DSUM_TOL.
In practice it has been found that the relative error in the Ewald forces
(RMS) due to cutting off the direct sum at CUT is between 10.0 and 50.0
times DSUM_TOL. Standard values for DSUM_TOL are in the range of
0.000001 to 0.00001 leading to estimated RMS deviation force errors of
0.00001 to 0.0005.

Special notes about the PME (when IEWALD =1):

ey

(2)

3)

“4)

Imaging: The PME method, as implemented, does not image residues in the same manner as
standard AMBER. !4 Standard AMBER, when periodic boundary conditions are applied, will
translate all the atoms in a given residue back into the box if the first atom in that residue is
outside the box. [An exception to this case — when running dynamics and running without a
belly IBELLY = 0) and without position constraints (NTR = 0) — is that translation of the
entire solute will occur if the center of geometry of the solute is outside the box.] Technically,
the PME does not need to explicitly image (translate) the atoms since in the calculations imag-
ing to the unit cell is done implicitly.

Pressure: Correct calculation of the pressure requires that each solvent molecule be repre-
sented as a separate molecule in the topology file. This is the default behavior when the BOX
or SOL options are used in EDIT. A routine is called to check if this is indeed the case when
using standard water residues (named WAT) and will print a warning message if inconsisten-
cies are detected.

Quick Error estimate: During a PME run, whenever the energy summary is printed, an esti-
mate of the RMS force error is also printed.

Fairlist: The Lennard-Jones interactions (stored in a pairlist updated every NSNB steps) are
calculated using an atom-based cutoff when using PME rather than the residue (charge group)
based cutoff applied in standard AMBER. This is appropriate since residue-based pairlisting is
only relevant to avoid splitting the dipole when electrostatic interactions are involved.

14 A supplementary program called rdparm has been provided which can convert trajectory (mdcrd) files from PME imaging to stan-

dard imaging.

1/30/113

SANDER module Input section ONE Page 119

&)

(6)

Forces: Although the PME method does rigourously conserve energies-- assuming a high
enough level of accuracy obtained through small charge grids (NFFT1, NFFT2, NFFT3), low
DSUM_TOL, and high level interpolation (ORDER)-- the forces are not conserved. In test
cases, this led to problems whereby a directed force component appeared when the pairlist was
not updated very frequently. In order to circumvent this, any net force component is now
zeroed every step (in subroutine accumforce). This does not seem to effect energy conserva-
tion. In the future, this will be an input option (e.g. to turn on or off net force zeroing).

Compatibility: The following options are not compatible with the Ewald method:

CUT2ND: cannot have secondary cutoffs on the van der Waals terms.
IPOL = 1: polarization is not supported

IPRR and IPWR: cannot read/write pairlists to a file for later reuse.
IFTRES = 1: cannot calculate all solute — solute interactions.

IMGSLT = 1: not compatible

IFBOX = 2: cannot work with truncated octahedral boundary conditions.

For more information about the application of the PME method, please refer to the following refer-

€nces:

York, D.M.; Darden, T.A. and Pedersen, L.G. “The effect of long-range electrostatic interac-
tions in simulations of macromolecular crystals: A comparison of the Ewald and truncated
list methods.” J. Chem. Phys. 99(10), 8345 (1993).

York, D.M.; Wlodawer, A.; Pedersen, L.G. and Darden, T.A. ‘“Atomic-level accuracy in
simulations of large protein crystals.” Proc. Natl. Acad. Sci. 91, 8715 (1994).

For more general information about the Ewald method, please see:

Allen, M.P. and Tildesley, D.J. Computer Simulation of Liquids Oxford (1987).

Valleau, J.P.; Whittington, S.G. “A Guide to Monte Carlo for Statistical Mechanics: 1. High-
ways.” in Statistical Mechanics. A. A Modern Theoretical Chemistry. B.J. Berne: New York,
1977; pp 137-168.

1/30/113

SANDER module

Input section TWO

SECTION TWO: Weight change information

Page 120

This section of information is read (if NMRMAX > 0) as a series of namelist specifications, with
name "&wt". This namelist is read repeatedly until a namelist &wt statement is found with

TYPE=END.

Overview of weight change variables
variable description
TYPE Defines quantity being varied; valid options are list-

ed below.

ISTEP1,ISTEP2

This change is applied over steps/iterations ISTEP1
through ISTEP2. If ISTEP2 = 0, this change will
remain in effect from step ISTEP1 to the end of the
run at a value of VALUE1 (VALUE?2 is ignored in
this case). (default= both 0)

VALUE1,VALUE2

Values of the change corresponding to ISTEP1 and
ISTEP2, respectively. If ISTEP2=0, the change is
fixed at VALUE]1 for the remainder of the run, once
step ISTEP1 is reached.

IINC

IMULT

If IINC > 0, then the change is applied as a step
function, with IINC steps/iterations between each
change in the target VALUE (ignored if ISTEP2=0).
If IINC =0, the change is done continuously. (de-
fault=0)

If IMULT=0, then the change will linearly interpo-
lated from VALUE1 to VALUE?2 as the step number
increases from ISTEP1 to ISTEP2. (default)

If IMULT=1, then the change will be effected by a
series of multiplicative scalings, using a single fac-
tor, R, for all scalings. i.e.

VALUE2 = (R**INCREMENTS) * VALUEI.
INCREMENTS is the number of times the target
value changes, which is determined by ISTEPI, IS-
TEP2, and IINC.

1/30/113

SANDER module

Input section TWO Page 121

The remainder of this section describes the options for the TYPE parameter. For a few types of
cards, the meanings of the other variables differ from that described above; such differences are noted
below. Valid Options for TYPE (you must use uppercase) are:

BOND

ANGLE

TORSION

IMPROP

VDW

HB

ELEC

NB
ATTRACT

REPULSE

RSTAR

SOFTR
INTERN

ALL

REST
RESTS

RESTL

NOESY

SHIFTS

Varies the relative weighting of bond energy terms.
Varies the relative weighting of valence angle energy terms.

Varies the relative weighting of torsion (and J-coupling) energy terms. Note that
any restraints defined in the input to the PARM program are included in the above.
Improper torsions are handled separately (IMPROP).

Varies the relative weighting of the "improper" torsional terms. These are not
included in TORSION.

Varies the relative weighting of van der Waals energy terms. This is equivalent to
changing the well depth (epsilon) by the given factor.

Varies the relative weighting of hydrogen-bonding energy terms.
Varies the relative weighting of electrostatic energy terms.
Varies the relative weights of the non-bonded (VDW, HB, and ELEC) terms.

Varies the relative weights of the attractive parts of the van der waals and h-bond
terms.

Varies the relative weights of the repulsive parts of the van der waals and h-bond
terms.

Varies the effective van der Waals radii for the van der Waals (VDW) interactions
by the given factor. Note that this is done by changing the relative attractive and
repulsive coefficients, so ATTRACT/REPULSE should not be used over the same
step range as RSTAR.

Varies the soft-repulsion non-bond force constant. Has no effect if ISFTRP.LE.0.

Varies the relative weights of the BOND, ANGLE and TORSION terms.
"Improper" torsions (IMPROP) must be varied separately.

Varies the relative weights of all the energy terms above (BOND, ANGLE, TOR-
SION, IMPROP, VDW, HB, and ELEC; does not affect RSTAR).

Varies the relative weights of *all* the NMR restraint energy terms.

Varies the weights of the "short-range" NMR restraints. Short- range restraints are
defined by the SHORT instruction (see below).

Varies the weights of any NMR restraints which are not defined as "short range" by
the SHORT instruction (see below). When no SHORT instruction is given, RESTL
is equivalent to REST.

Varies the overall weight for NOESY volume restraints. Note that this value multi-
plies the individual weights read into the "awt" array. (Only if NMRMAX=2 or 3;
see Section 4 below).

Varies the overall weight for chemical shift restraints. Note that this value multi-
plies the individual weights read into the "wt" array. (Only if NMRMAX=2 or 3;
see section 4 below).

1/30/113

SANDER module

SHORT

TEMPO
TAUTP

CUT
NSTEPO

STPMLT

DISAVE
ANGAVE
TORAVE

Input section TWO Page 122

Defines the short-range restraints. For this instruction, ISTEP1, ISTEP2, VALUEI,
and VALUE2 have different meanings. A short-range restraint can be defined in
two ways.

(1) If the residues containing each pair of bonded atoms comprising the restraint
are close enough in the primary sequence:

ISTEP1 < ABS(delta_residue) < ISTEP2,
where delta_residue is the difference in the numbers of the residues containing the
pair of bonded atoms.

(2) If the distances between each pair of bonded atoms in the restraint fall within a
prescribed range:

VALUEI] = distance = VALUE2.
Only one SHORT command can be issued, and the values of ISTEP1, ISTEP2,
VALUEI1, and VALUE2 remain fixed throughout the run. However, if IINC>O0,
then the short-range interaction list will be re-evaluated every IINC steps.

Varies the target temperature TEMPO.

Varies the coupling parameter, TAUTP, used in temperature scaling when tempera-
ture coupling options NTT=1,2 or 3 are used.

Varies the non-bonded cutoff distance.

If present, this instruction will reset the initial value of the step counter (against
which ISTEP1/ISTEP2 and NSTEP1/NSTEP2 are compared) to the value ISTEP1.
An NSTEPO instruction only has an effect at the beginning of a run. For this card
(only) ISTEP2, VALUEI1, VALUE2 and IINC are ignored. If this card is omitted,
NSTEPO = 0. This card can be useful for simulation restarts, where NSTEPO is set
to the final step on the previous run.

If present, the NMR step counter will be changed in increments of STPMLT for
each actual dynamics step. For this card, only VALUEI is read. ISTEP1, ISTEP2,
VALUE2, [INC, and IMULT are ignored. Default=1.0.

If present, then by default time-averaged values (rather than instantaneous values)
for the appropriate set of restraints will be used. DISAVE controls distance data,
ANGAVE controls angle data, TORAVE controls torsion data.

See below for the functional form used in generating time-averaged data.

For these cards: VALUEI = 7 (characteristic time for exponential decay)
VALUE2 = POWER (power used in averaging; the nearest integer of value2 is
used)

Note that the range (ISTEP1—ISTEP2) applies only to TAU; The value of
POWER is not changed by subsequent cards with the same ITYPE field, and time-
averaging will always be turned on for the entire run if one of these cards appears.

Note also that, due to the way that the time averaged internals are calculated,
changing 7 at any time after the start of the run will only affect the relative weight-
ing of steps occurring after the change in z.

Separate values for ¢ and POWER are used for bond, angle, and torsion averaging.

1/30/113

SANDER module

DISAVI
ANGAVI
TORAVI

Input section TWO Page 123

The default value of = (if it is 0.0 here) is 1.0D+6, which results in no exponential
decay weighting. Any value of z = 1.D+6 will result in no exponential decay.

If DISAVE,ANGAVE, or TORAVE is chosen, one can still force use of an instan-
taneous value for specific restraints of the particular type (bond, angle, or torsion)
by setting the IFNTYP field to "1" when the restraint is defined (IFNTYP is
defined in section 3 below).

If time-averaging for a particular class of restraints is being performed, all
restraints of that class that are being averaged (that is, all restraints of that class
except those for which IFNTYP=1) *must* have the same values of NSTEP1 and
NSTEP2 (NSTEP1 and NSTEP2 are defined below).

(For these cards, IINC and IMULT are ignored)

See the discussion of time-averaged restraints following the input descriptions.

ISTEP1: Ignored.

ISTEP2: Sets IDMPAV. If IDMPAV > 0, and a dump file has been specified
(DUMPAVE is set in the file redirection section below), then the time-averaged
values of the restraints will be written every IDMPAV steps. Only one value of
IDMPAYV can be set (corresponding to the first DISAVI/ANGAVI/TORAVI card
with ISTEP2 > 0), and all restraints (even those with IFNTYP=1) will be
"dumped" to this file every IDMPAV steps. The values reported reflect the current
value of 7.

VALUEI: The integral which gives the time-averaged values is undefined for the
first step. By default, for each time-averaged internal, the integral is assigned the
current value of the internal on the first step. If VALUEI1=0, this initial value of
internal r is reset as follows:

-1000. < VALUE1l < 1000.: Initial value =r_initial + VALUE
VALUE1l <= -1000.: Initial value =r_target + 1000.
1000. <= VALUE1l : Initial value = r_target - 1000.

r_target is the target value of the internal, given by R24R3 (or just R3, if R2 is 0).
VALUEI is in angstroms for bonds, in degrees for angles.

VALUE2: This field can be used to set the value of 7 used in calculating the time-
averaged values of the internal restraints reported at the end of a simulation (if
LISTOUT is specified in the redirection section below). By default, no exponential
decay weighting is used in calculating the final reported values, regardless of what
value of 7 was used during the simulation. If VALUE2>0, then = = VALUE2 will
be used in calculating these final reported averages. Note that the value of
VALUE2 = 7 specified here only affects the reported averaged values in at the end
of a simulation. It does not affect the time-averaged values used during the simula-
tion (those are changed by the VALUEI field of DISAVE, ANGAVE and TORAVE
instructions).

IINC: If IINC = 0, then forces for the class of time-averaged restraints will be cal-
culated exactly as (dE/dr_ave) (dr_ave/dx). If IINC = 1, then then forces for the
class of time-averaged restraints will be calculated as (dE/dr_ave) (dr(t)/dx). Note
that this latter method results in a non-conservative force, and does not integrate to

1/30/113

SANDER module Input section TWO Page 124

END

a standard form. But this latter formulation helps avoid the large forces due to the
(1+IPOWER) term in the exact derivative calculation--and may avert instabilities
in the molecular dynamics trajectory for some systems. See the discussion of time-
averaged restraints following the input description.

Note that the DISAVI, ANGAVI, and TORAVI instructions will have no affect
unless the corresponding time average request card (DISAVE, ANGAVE or
TORAVE, respectively) is also present.

(For these cards, ISTEP1 and IMULT are ignored).

If formatted input is being read (&formwt was specified), any line which starts
with a pound symbol (#) is considered a comment line, and will be skipped.

END of this section.

NOTES:

ey
2
3)

“)

&)

(6)

)

All weights are relative to a default of 1.0 in the standard force field.
Weights are not cumulative.

For any range where the weight of a term is not modified by the above, the weight reverts to
1.0. For any range where TEMPO, SOFTR or CUTOFEF is not specified, the value of the rele-
vant constant is set to that specified in the input file.

If a weight is set to 0.0, it is set internally to 1.0D-7. This can be overridden by setting the
weight to a negative number. In this case, a weight of exactly 0.0 will be used. However, if any
weight is set to exactly 0.0, it cannot be changed again during this run of the program.

If two (or more) cards change a particular weight over the same range, the weight given on the
last applicable card will be the one used.

Once any weight change for which NSTEP2=0 becomes active (i.e. one which will be effective
for the remainder of the run), the weight of this term cannot be further modified by other
instructions.

Changes to RSTAR result in exponential weighting changes to the attractive and repulsive
terms (proportional to the scale factor**6 and **12, respectively). For this reason, scaling
RSTAR to a very small value (e.g. <0.1) may result in a zeroing-out of the vdw term.

1/30/113

SANDER module

Input section THREE Page 125

SECTION THREE: File redirection commands

Input/output redirection information can be read as described here. The inclusion of these cards
is optional. By default (if not redirected here), all input is taken from the standard input file. Redirec-
tion cards, if provided, must follow the end of the SECTION TWO input. Redirection card input is
terminated by the first non-blank line which does not start with a recognized redirection TYPE (e.g.
LISTIN, LISTOUT, etc.).

The format of the redirection cards is

TYPE = filename

where TYPE is any valid redirection keyword (see below), and filename is any character string. The
equals sign ("=") is required, and TYPE must be given in uppercase letters.

Valid redirection keywords are:

LISTIN

LISTOUT

DISANG

NOESY
SHIFTS
DUMPAVE

An output listing of the restraints which have been read, and their deviations from
the target distances before the simulation has been run. By default, this listing is
not printed. If POUT is used for the filename, these deviations will be printed in
the normal output file.

An output listing of the restraints which have been read, and their deviations from
the target distances _after the simulation has finished. By default, this listing is not
printed. If POUT is used for the filename, these deviations will be printed in the
normal output file.

The file from which the distance and angle restraint information described below
(Section 3) will be read.

File from which NOESY volume information (Section 4), if any, will be read.
File from which chemical shift information (Section 5), if any, will be read.

File to which the time-averaged values of all restraints will be written, if DISAVI /
ANGAVI / TORAVI has been used to set IDMPAV=0. If either IDMPAV has not
been set, or DUMPAVE is not specified, this file will not be written.

1/30/113

SANDER module

Input section FOUR Page 126

SECTION FOUR:
Distance, angle and torsional
(and J-coupling) restraints

The input/output redirection cards (if any) are followed by the distance and angle restraints,
which are read if nmrmax > 0. Namelist rst ("&rst") contains the following variables; it is read
repeatedly until a namelist &rst statement is found with IAT(1)=0.

In many cases, the user will not prepare this section of the input by hand, but will use the auxil-
iary programs makeRST and makeCHIR_CONS to prepare input from simpler files. See the Auxiliary
programs section below for details.

Variables in the &rst namelist:

IAT(1)—IAT(4)

ATNAM

If IRESID = 0 (normal operation):

The atoms defining the restraint. If IAT(3) <0, this is a distance restraint.
If IAT(4) <0, this is an angle restraint. Otherwise, this is a torsional (or J-
coupling, if desired) restraint.

If this is a distance restraint, and IAT1 <O, then a group of atoms is
defined below, and the coordinate-averaged position of this group will be
used in place of the coordinates of atom 1 [IAT(1)]. Similarly, if IAT(2) <
0, a group of atoms will be defined below whose coordinate-averaged
position will be used in place of the coordinates for atom 2 [IAT(2)].

If IRESID=1:

IAT(1) — IAT(4) point to the numbers of the *residues* containing the
atoms comprising the internal. Residue numbers are the absolute numbers
in the entire system. In this case, the variables ATNAM(1) — ATNAM(4)
must be specified, and give the character names of the desired atoms
within the respective residues.

If IAT(1) < 0 or IAT(2) < 0, then group input will still be read in place of
the corresponding atom, as described below.

Defaults for IAT(1)—IAT(4) are 0.

If IRESID = 1, then the character names of the atoms defining the internal are con-
tained in ATNAM(1)—=ATNAM(4). Residue IAT(1) is searched for atom name
ATNAM(1); residue IAT(2) is searched for atom name ATNAM(2); etc. On
machines using the portable namelist code, the form is
atnam(1)="AT1’ ,atnam(2)="AT2’ etc, otherwise the form atnam="AT1’,]AT2’ etc
can be used.

Defaults for ATNAM(1)—ATNAM(4) are .

1/30/113

SANDER module

IRESID

NSTEP1
NSTEP2

IRSTYP

IFVARI

NINC

IMULT

R1—R4
RK2,RK3
R1A—R4A
RK2A RK3A

Input section FOUR Page 127

Indicates whether IAT(I) points to an atom # or a residue #. See descriptions of
IAT() and ATNAMY() above.

Default = 0.

This restraint is applied for steps/iterations NSTEP1 through NSTEP2. If NSTEP2
= 0, the restraint will be applied from NSTEP1 through the end of the run. Note
that the first step/iteration is considered step zero (0).

Defaults for NSTEP1, NSTEP2 are both 0.

Normally, the restraint target values defined below (R1—=R4) are used directly. If
IRSTYP = 1, the values given for R1—=R4 define relative displacements from the
current value (value determined from the starting coordinates) of the restrained
internal. For example, if IRSTYP=1, the current value of a restrained distance is
1.25, and R1 (below) is -0.20, then a value of R1=1.05 will be used.

Default is IRSTYP=0.

If IFVARI > 0, then the force constants/positions of the restraint will vary with step
number. Otherwise, they are constant throughout the run. If IFVARI >0, then the
values RIA—R4A,RK2A, and RK3A must be specified (see below).

Default is IFVARI=0.

If IFVARI > and NINC > 0, then the change in the target values of of R1—R4 and
K2 K3 is applied as a step function, with NINC steps/ iterations between each
change in the target values. If NINC = 0, the change is effected continuously (at
every step).

Default for NINC is the value assigned to NINC in the most recent namelist where
NINC was specified. If NINC has not been specified in any namelist, it defaults to
0.

If IMULT=0, and the values of force constants RK2 and RK3 are changing with
step number, then the changes in the force constants will be linearly interpolated
from rk2—rk2a and rk3—rk3a as the step number changes.

If IMULT=1 and the force constants are changing with step number, then the
changes in the force constants will be effected by a series of multiplicative scal-
ings, using a single factor, R, for all scalings. i.e.

rk2a = R**INCREMENTS * rk2
rk3a = R**INCREMENTS * rk3.

INCREMENTS is the number of times the target value changes, which is deter-
mined by NSTEP1, NSTEP2, and NINC.

Default for IMULT is the value assigned to IMULT in the most recent namelist
where IMULT was specified. If IMULT has not been specified in any namelist, it
defaults to 0.

The restraint is a well with a square bottom with parabolic sides out to a defined
distance, and then linear sides beyond that. Force constants are in units of

1/30/113

SANDER module Input section FOUR Page 128

kcal/mol. If R is the value of the restraint in question:

R<rl Linear, with the slope of the "left-hand" parabola at the point R=r1.
rl <=R<r2 Parabolic, with force constant k2. E=0 at R=r2.

2<=R<r3 E=0.

r3<=R<r4 Parabolic, with force constant K3. E=0 at R=r3.

4 <=R Linear, with the slope of the "right-hand" parabola at the point R=r4.

For torsional restraints, the value of the torsion is translated by +-n*360, if neces-
sary, so that it falls closest to the mean of 2 and r3.

Specified distances are in Angstroms. Specified angles are in degrees. Force con-
stants for distances are in kcal/mol-A%. Force constants for angles are in kcal/mol-
rad®. (Note that angle positions are specified in degrees, but force constants are in
radians, consistent with typical reporting procedures in the literature).

IFVARI = 0 The values of r1—r4, tk2, and rk3 will remain constant through-
out the run.

IFVARI > 0 The values rla, r2a, r3a, rda, r2ka and r3ka are also used. These
variables are defined as for r1—r4 and rk2, rk3, but correspond
to the values appropriate for NSTEP = NSTEP2: e.g., if IVARI
>0, then the value of rl will vary between NSTEPI and
NSTEP2, so that, e.g. r1(NSTEP1) =r1 and r1(NSTEP2) =rla.
Note that your must specify an explicit value for nstep/ and
nstep? if you use this option.

Defaults for rl—rd,rk2,rk3,rla—rda,rk2a and rk3a are the values assigned to
them in the most recent namelist where they were specified. They should always be
specified in the first &rst namelist.

(IGR1(i),i=1—=200)

If IAT(1) < 0 and IAT(3)=IAT(4)=0, then IGR1() gives the atoms defining the
group whose coordinate averaged position is used to define "atom 1" in a distance
restraint. If IRESID = 0, absolute atom numbers are specified by the elements of
IGR1(). If IRESID = 1, then IGR1(I) specifies the number of the residue contain-
ing atom I, and the name of atom I must be specified using GRNAMI(I). A maxi-
mum of 200 atoms are allowed in any group. Only specify those atoms which are
needed.

RICOEF(1)—RJCOEF(3)

By default, 4-atom sequences specify torsional restraints. It is also possible to
impose restraints on the vicinal *J-coupling value related to the underlying torsion.
J is related to the torsion 7 by the approximate Karplus relationship:
J=A cos2(r) + Bcos(t) + C. If you specify a non-zero value for either RICOEF(1)
or RICOEF(2), then a J-coupling restraint, rather than a torsional restraint, will be
imposed. At every MD step, J will be calculated from the Karplus relationship with
A =RJCOEF(1), B = RJCOEF(2) and C = RICOEF(3). In this case, the target val-
ues (R1->R4, R1A->R4A) and force constants (RK2, RK3, RK2A, RK3A) refer to
J-values for this restraint. RJCOEF(1)->RJCOEF(3) must be set individually for
each torsion for which you wish to apply a J-coupling restraint, and
RJCOEF(1)->RJCOEF(3) may be different for each J-coupling restraint.

1/30/113

SANDER module

Input section FOUR Page 129

With respect to other options and reporting, J-coupling restraints are treated identi-
cally to torsional restraints. This means that if time-averaging is requested for tor-
sional restraints, it will apply to J-coupling restraints as well. The J-coupling
restraint contribution to the energy is included in the "torsional" total. And changes
in the relative weights of the torsional force constants also change the relative
weights of the J-coupling restraint terms.

Setting RICOEF has no effect for distance and angle restraints.
Defaults for RICOEF(1)->RJCOEF(3) are 0.0.

(IGR2(i),i=1—>200)

If IAT(2) < 0 and IAT(3)=IAT(4)=0, then IGR1 gives the atoms defining the group
whose coordinate averaged position is used to define "atom 2" in a distance
restraint. If IRESID = 0, absolute atom numbers are specified by the elements of
IGR2(). If IRESID = 1, then IGR2(I) specifies the number of the residue contain-
ing atom I, and the name of atom I must be specified using GRNAM1(I). A maxi-
mum of 200 atoms are allowed in any group. Only specify those atoms which are
needed.

Default value for any unspecified element of IGRI or IGR2 is 0.

(GRNAMI1(1),i=1—200)
(GRNAM2(1),i=1—200)

IR6

IFNTYP

If group input is being specified (IAT(1) or IAT(2) < 0 and IAT(3)=IAT(4)=0), and
IRESID = 1, then the character names of the atoms defining the group are con-
tained in GRNAM1(i) or GRNAMZ2(i)), as described above. In the case IAT(1) <0,
each residue IGR1(i) is searched for an atom name GRNAMI (i) and added to the
first group list. In the case IAT(2) < 0, each residue IGR2(i) is searched for an
atom name GRNAM2(i) and added to the second group list.

Defaults for GRNAMI(i) and GRNAM2(i) are > .

If a group coordinate-averaged position is being used (see IGR1 and IGR2 above),
the average position can be calculated in either of two manners: If IR6 = 0, center-
of-mass averaging will be used. If IR6=1, the < r° >0 average of all interaction
distances to atoms of the group will be used.

Default for IR6 is the value assigned to IR6 in the most recent namelist where IR6
was specified. If IR6 has not been specified in any namelist, it defaults to 0.

If time-averaged restraints have been requested (see DISAVE/ANGAVE/TORAVE
above), they are, by default, applied to all restraints of the class specified. Time-
averaging can be overridden for specific internals of that class by setting IFNTYP
for that internal to 1. IFNTYP has no effect if time-averaged restraint are not being
used.

Default value is IFNTYP=0.

Namelist &rst is read for each restraint. Restraint input ends when a namelist statement with iat(1) =
0 (or iat(1) not specified) is found. Note that comments can precede or follow any namelist statment,
allowing comments and restraint definitions to be freely mixed.

1/30/113

SANDER module Input section FIVE Page 130

SECTION FIVE: NOESY volume restraints

After the previous section, NOESY volume restraints may be read. This data described in this
section is only read if NMRMAX = 2 or 3. The molecule may be broken in overlapping sub-
molecules, in order to reduce time and space requirements. Input for each submolecule consists of
namelist "&noeexp", followed immediately by standard AMBER "group" cards defining the atoms in
the submolecule. In addition to the submolecule input ("&noeexp"), you may also need to specify
some additional variables in the cntr1 namelist in section ONE; see the "NMR variables" description
in that section.

In many cases, the user will not prepare this section of the input by hand, but will use the auxil-
iary program makeNOESY to prepare input from simpler files. See the Auxiliary programs section
below for details.

Variables in the §noeexp namelist:

For each submolecule, the namelist "&noeexp" is read (either from stdin or from the NOESY redirec-
tion file) which contains the following variables. There are no effective defaults for npeak, emix, ihp,
Jjhp, and aexp: you must specify these.

NPEAK(imix) Number of peaks for each of the "imix" mixing times; if the last mixing time is
mxmix, set NPEAK(mxmix+1) =-1. End the input when NPEAK(1) < 0.

EMIX(imix) Mixing times (in seconds) for each mixing time.

IHP(imix,ipeak)

JHP(imix,ipeak) Atom numbers for the atoms involved in cross-peak "ipeak" at mixing time "imix"
AEXP(imix,ipeak) Experimental or target integrated intensity for this cross peak.

ARANGE(imix,ipeak)
"Uncertainty" range for this peak: if the calculated value is within tARANGE of
AEXP, then no penalty will be assessed. Default uncertainties are all zero.

AWT(imix,ipeak) Relative weight for this cross peak. Note that this will be multiplied by the overall
weight given by the NOESY weight change cards in the weight changes section
(Section 1). Default values are 1.0.

If AWT is negative, this cross peak is part of a set of overlapped peaks. The com-
puted intensity is added to the peak that follows; the next time a peak with AWT >
0 is encountered, the running sum for the calculated peaks will be compared to the
value of AEXP for that last peak in the list. Hence, when AWT < 0, its magnitude
is ignored, and the corresponding entry in the AEXP array is also ignored. In other
words, a set of overlapping peaks is represented by one or more peaks with AWT <
0 followed by a peak with AWT > 0. The computed total intensity for these peaks
will be compared to the value of AEXP for the final peak, making use of the value
given for AWT in the final peak.

1/30/113

SANDER module Input section FIVE Page 131

OMEGA Spectrometer frequency, in Mhz. Default is 500. It is possible for different sub-
molecules to have different frequencies, but omega will only change when it is
explicitly re-set. Hence, if all of your data is at 600 Mhz, you need only set omega
to 600. in the first submolecule.

TAUROT Rotational tumbling time of the molecule, in nsec. Default is 1.0 nsec. Like
omega, this value is "sticky", so that a value set in one submolecule will remain
until it is explicitly reset.

TAUMET Correlation time for methyl jump motion, in ns. This is only used in computing
the intra-methyl contribution to the rate matrix. The ideas of Woessner are used,
specifically as recommended by Kalk & Berendsen, J. Magn. Res. 24, 343 (1976).
Default is 0.0001 ns, which is effectively the fast motion limit. The default is con-
sistent with the way the rest of the rate matrix elements are determined (also in the
fast motion limit,) but probably is not the best value to use, since methyl groups
appear to have T1 values that are systematically shorter than other protons, and this
is likely to arise from the fact that the methyl correlation time can be near to the
inverse of the spectrometer frequency. A value of 0.02 - 0.05 ns is probably better
than 0.0001, but this is still an active research area, and you are on your own here!
A couple of recent papers that deal with this subject are Olejniczak & Weiss, J.
Magn. Res. 86, 148-155 (1990) and Ishima, Shibata & Akasas, ibid. 91, 455-465
(1991); these papers also provide references to earlier work. As with omega,
taumet can be different for different sub-molecules, but will only change when it is
explicitly re-set.

ID20 Flag for determining if exchangeable protons are to be included in the spin-diffu-
sion calculation. If ID20=0 (default) then all protons are included. If ID20=1,
then all protons bonded to nitrogen or oxygen are assumed to not be present for the
purposes of computing the relaxation matrix. No other options exist at present, but
they could easily be added to the subroutine indexn. Alternatively, you can manu-
ally rename hydrogens in the prmtop file so that they do not begin with "H": such
protons will not be included in the relaxation matrix. (Note: for technical reasons,
the HOH proton of tyrosine must always be present, so setting ID20=1 will not
remove it; we hope that this limitation will be of minor importance to most users.)
The id20 variable retains its value across namelist reads, i.e. its value will only
change if it is explicitly reset.

OSCALE overall scaling factor between experimental and computed volume units. The
experimental intensities are multiplied by oscale before being compared to calcu-
lated intensities. This means that the weights WNOESY and AWT always refer to
"theoretical" intensity scales rather than to the (arbitrary) experimental units. The
oscale variable retains its value across namelist reads, i.e. its value will only
change if it is explicitly reset. The initial (default) value is 1.0.

The atom numbers ihp and jhp are the absolute atom numbers assigned in the EDIT module of
AMBER. For methyl groups, use the number of the last proton of the group; for the delta and epsilon
protons of aromatic rings, use the delta-2 or epsilon-2 atom numbers. Since this input requires you to
know the absolute atom numbers assigned by AMBER to each of the protons, you may wish to use the
separate getsub program which provides some facility for turning human-readable names into atom
numbers, and also assists in dividing a large molecule into submolecules.

Following namelist "&noeexp", give the AMBER "group" cards that identify this submolecule.
This combination of "&noeexp" and "group" cards can be repeated as often as needed for many

1/30/113

SANDER module Input section FIVE Page 132

submolecules, subject to the limits described in the "resize.com" shell script. As mentioned above,
this input section ends when NPEAK(1) < 0, or when and end-of-file is reached.

1/30/113

SANDER module

Input section SIX Page 133

SECTION SIX: Chemical shift restraints

After reading NOESY restraints above (if any), read the chemical shift restraints in namelist
&shf. In many cases, the user will not prepare this section of the input by hand, but will use the auxil-
iary program makeSHF to prepare input from simpler files. See the Auxiliary programs section

below for details.

Variables in the &shf namelist. (Defaults are only available for shrang, wt, nter, and shcut; you
must specify the rest.)

NRING
NATR(i)
IATR(j,i)
NAMR(i)

STR(i)

NPROT
IPROT(i)

OBS(i)

SHRANG(i)

WT(i)

SHCUT

NTER

Number of rings in the system.
Number of atoms in the i-¢h ring.
Absolute atom number for the j-th atom of the i-th ring.

Eight-character string that labels the i-th ring. The first three characters give the
residue name (in caps); the next three characters contain the residue number (right
justified); column 7 is blank; column 8 may optionally contain an extra letter to
distinguish the two rings of trp, or the 5 or 8 rings of the heme group.

Ring current intensity factor for the i-th ring. Older values are summarized by
Cross and Wright, J. Magn. Res. 64:220-231 (1985); more recent empirical
parametrizations based on a larger database give improved results (K. Osapay and
D.A. Case, J. Am. Chem. Soc.113,9436-9444 (1991).

Number of protons for which penalty functions are to be set up.

Absolute atom number of the i-th proton whose shifts are to be evaluated. For
equivalent protons, such as methyl groups or rapidly flipping phenylalanine rings,
enter all two or three atom numbers in sequence; averaging will be controlled by
the wt parameter, described below.

Observed secondary shift for the i-#4 proton. This is typically calculated as the
observed value minus a random coil reference value.

"Uncertainty" range for the observed shift: if the calculated shift is within
+SHRANG of the observed shift, then no penalty will be imposed. The default
value is zero for all shifts.

Weight to be assigned to this penalty function. Note that this value will be multi-
plied by the overall weight (if any) given by the SHIFTS command in the assign-
ment of weights (above). Default values are 1.0. For sets of equivalent protons,
give a negative weight for all but the last proton in the group; the last proton gets a
normal, positive value. The average computed shift of the group will be compared
to obs entered for the last proton.

Values of calculated shifts will be printed only if the absolute error between calcu-
lated and observed shifts is greater than this value. Default = 0.3 ppm.

Resiude number of the N-terminus, for protein shift calculations; default = 1.

1/30/113

SANDER module Input section SIX Page 134

CTER Residue number of the C-terminus, for protein shift calculations. Believe it or not,
the current code cannot figure this out for itself.

1/30/113

SANDER module Example input files Page 135

Example input files

In this section, we give some commented examples of files for various common tasks. We hope
these represent "good AMBER practice," but please recognize that there are many ways to use this
program. Comments in parentheses should not be placed in the input file; comments following a "#"
sign may be placed in the input files.

1. Simple restrained minimization
Minimization with cartesian restraints
&cntrl
imin=1, maxcyc=200, (invoke minimization)
scee=2.0, idiel=0, cut=12.0, (force field options)
nsnb=20, (update non-bonded list)
ntpr=5, (print frequency)
ntr=1, (turn on cartesian restraints)
&end
Group input for restrained atoms
1.0 (force constant for restraint)
RES 1 58 (all atoms in residues 1-58)
END
END

2. "Plain" molecular dynamics run

molecular dynamics run

&cntrl
imin=0, irest=1, ntx=7, (restart MD)
scnb=8.0, scee=1.2, idiel=1, cut=9.0, (force field options)
ntt=1, temp0=300.0, tautp=0.2, (temperature control)
ntp=2, taup=0.2, (pressure control)
ntb=2, ntc=4, ntf=2, nsnb=25, (SHAKE, periodic bc.)
nstlim=500000, (run for 0.5 nsec)
ntwe=100, ntwx=100, ntpr=200, (output frequency)

&end

1/30/113

SANDER module Example input files Page 136

3. Simulated annealing NMR refinement

15ps simulated annealing protocol

&cntrl
nstlim=15000, ntt=1, (time limit, temp. control)
scee=1.2, (scee must be set - 1-4 scale factor)
ntpr=500, pencut=0.1, (control of printout)
ipnlty=1, nmrmax=1, (NMR penalty function options)
vlimit=10, (prevent bad temp. jumps)
&end
#
Simple simulated annealing algorithm:
#

from steps 0 to 1000: raise target temperature 10->1200K
from steps 1000 to 3000: leave at 1200K
from steps 3000 to 15000: re-cool to low temperatures

#
&wt type='TEMPO’, istepl=0,istep2=1000,valuel=10.,
value2=1200., &end
&wt type='TEMPO’, istepl=1001, istep2=3000, valuel=1200.,
value2=1200.0, &end
&wt type='TEMPO’, istepl=3001, istep2=15000, valuel=0.,
value2=0.0, &end
#
Strength of temperature coupling:
steps 0 to 3000: tight coupling for heating and equilibration
steps 3000 to 11000: slow cooling phase
steps 11000 to 13000: somewhat faster cooling
steps 13000 to 15000: fast cooling, like a minimization
#
&wt type='TAUTP’, istepl=0,istep2=3000,valuel=0.2,
value2=0.2, &end
&wt type='TAUTP’, istepl=3001,istep2=11000,valuel=4.0,
value2=2.0, &end
&wt type='TAUTP’, istepl=11001,istep2=13000,valuel=1.0,
value2=1.0, &end
&wt type='TAUTP’, istepl=13001,istep2=14000,valuel=0.5,
value2=0.5, &end
&wt type='TAUTP’, istepl=14001,istep2=15000,valuel=0.05,
value2=0.05, &end

(continued on next page)

1/30/113

SANDER module Example input files Page 137

3. Simulated annealing NMR refinement (continued)

#
"Ramp up" the restraints over the first 3000 steps:
#
&wt type='REST’, istepl=0,istep2=3000,valuel=0.1,
value2=1.0, &end
&wt type='REST’, istepl=3001,istep2=15000,valuel=1.0,
value2=1.0, &end

&wt type='END’ &end
LISTOUT=POUT (get restraint violation list)
DISANG=RST.f (file containing NMR restraints)

1/30/113

SANDER module Example input files

Page 138

4. Part of the RST.f file referred to above

first, some distance constraints prepared by makeRST:
(comment line is input to makeRST, &rst namelist is output)

#
#(proton 1 proton 2 upper bound)
B
#
2 ILE HA 3 ALA HN 4.00
#

&rst iat= 23, 40, r3= 4.00, r4= 4.50,

rl =1.3, r2 = 1.8, rk2=0.0, rk3=32.0, iré6=

#
3 ALA HA 4 GLU HN 4.00
#

&rst iat= 42, 50, r3= 4.00, r4= 4.50, &end
#
3 ALA HN 3 ALA MB 5.50
#

&rst iat= 40, -1, r3= 6.22, rd4= 6.72,

igrl= 0, 0, 0, 0, igr2= 44, 45,
#
#oe etc......
#
next, some dihedral angle constraints, currently prepared "by hand":
#

&rst iat= 213, 215, 217, 233, rl=-190.0,
r2=-160.0, r3= -80.0, r4= -50.0, &end

&rst iat= 233, 235, 237, 249, rl1=-190.0,
r2=-160.0, r3= -80.0, r4= -50.0, &end

1,

46,

&end

0,

&end

1/30/113

SANDER module Example input files Page 139

4. Part of the RST\f file referred to above (continued)

next, chirality and omega constraints prepared by makeCHIR RST:

chirality for residue 1 atoms: CA CG HB2 HB3
&rst iat=3 , 8 , 6 , 7,
r1=10., r2=60., r3=80., r4=130., rk2 = 10., rk3=10., &end
#
chirality for residue 1 atoms: CB SD HG2 HG3
&rst iat=5, 11 , 9 , 10 , &end
#
<chirality for residue 1 atoms: N C HA CB
&rst iat=1 , 18 , 4 , 5 , &end
#
chirality for residue 2 atoms: CA CG2 CGl HB
&rst iat= 22 , 26 , 30 , 25 , &end#

trans-omega constraint for residue 2

&rst iat= 22 , 20 , 18 , 3 ,

r1l=155., r2=175., r3=185., r4=205., rk2 = 80., rk3=80., &end

#
trans-omega constraint for residue 3

&rst iat= 41 , 39 , 37 , 22 , &end
#
trans-omega constraint for residue 4

&rst iat= 51 , 49 , 47 , 41 , &end

1/30/113

SANDER module Example input files Page 140
5. Sample NOESY intensity input file
#
A part of the NOESY intensity file we use for plastocyanin:
&noeexp
id2o=1, (exchangeable protons removed)
oscale=6.21le-4, (scale between exp. and calc. intensity units)
taumet=0.04, (correlation time for methyl rotation, in ns.)
taurot=4.2, (protein tumbling time, in ns.)
NPEAK = 13*3, (three peaks, each with 13 mixing times)
EMIX = 2.0E-02, 3.0E-02, 4.0E-02, 5.0E-02, 6.0E-02,
8.0E-02, 0.1, 0.126, 0.175, 0.2, 0.25, 0.3, 0.35,
(mixing times, in sec.)
IHP(1,1) = 13*423, 1IHP(1,2) = 13%*1029, 1IHP(1,3) = 13%421,
(number of the first proton)
JHP(1,1) = 78*568, JHP(1,2) = 65*1057, JHP(1,3) = 13*421,
(number of the second proton)
AEXP(1,1) = 5.7244, 7.6276, 7.7677, 9.3519,
10.733, 15.348, 18.601,
21.314, 26.999, 30.579,
33.57, 37.23, 40.011,
(intensities for the first cross-peak)
AEXP(1,2) = 8.067, 11.095, 13.127, 18.316,
22.19, 26.514, 30.748,
39.438, 44.065, 47.336,
54.467, 56.06, 60.113,
AEXP(1,3) = 7.708, 13.019, 15.943, 19.374,
25.322, 28.118, 35.118,
40.581, 49.054, 53.083,
56.297, 59.326, 62.174,
&end
SUBMOL1
RES 27 27 29 29 39 41 57 57 70 70 72 72 82 82 (residues in this submol)
END
END

1/30/113

SANDER module Example input files

Page 141

6. A more complicated constraint

#

FHORH R H OH HF R R R HHHHRHRH

1) Define two centers of mass. COM1 is defined by
{C1 in residue 1; C1 in residue 2; N2 in residue 3; C1 in residue 4}.
COM?2 is defined by {C4 in residue 1; O4 in residue 1; N* in residue 1}.
(These definitions are effected by the igrl/igr2 and grnaml/grnam2
variables; You can use up to 200 atoms to define a center-of-mass

group)

2) Set up a distance restraint between COM1 and COM2 which goes from a
target value of 5.0A to 2.5A, with a force constant of 1.0, over steps 1-5000.

3) Set up a distance restraint between COM1 and COM?2 which remains fixed
at the value of 2.5A as the force slowly constant decreases from
1.0 to 0.01 over steps 5001-10000.

4) Sets up no distance restraint past step 10000, so that free (unrestrained)
dynamics takes place past this step.

&rst iat=-1,-1, nstepl=1,nstep2=5000,
iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,
r1=0.00000E+00,r2=5.0000,r3=5.0000,

r4=99.000,rk2=1.0000,rk3=1.0000,
rla=0.00000E+00,r2a=2.5000,r3a=2.5000,
r4a=99.000,rk2a=1.0000,rk3a=1.0000,
igrl = 2,3,4,5,0,
grnaml(1)='Cl’,grnaml(2)='Cl’,grnaml(3)='N2’',grnaml(4)='Cl’,
igr2 =1,1,1,0,
grnam2(1)='C4’ ,grnam2(2)='04"',grnam2(3)='N*’,

&end

&rst iat=-1,-1, nstepl=5001,nstep2=10000,
iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,
r1=0.00000E+00,r2=2.5000,r3=2.5000,

r4=99.000,rk2=1.0000,rk3=1.0000,
rla=0.00000E+00,r2a=2.5000,r3a=2.5000,
r4a=99.000,rk2a=1.0000,rk3a=0.0100,
igrl = 2,3,4,5,0,
grnaml(1)='Cl’,grnaml(2)='Cl’,grnaml(3)='N2’,grnaml(4)='Cl’,
igr2 =1,1,1,0,
grnam2(1)='C4’ ,grnam2(2)='04"',grnam2(3)='N*’,
&end

1/30/113

SANDER module Auxiliary programs Page 142

Auxiliary programs

Here we describe some additional programs that may help out with preparing input for

SANDER. These programs are found in the src/nmr_aux directory. We are working on improving
documentation, so please be patient. An overview of the programs and scripts follows; some of the
programs are further described in their own ‘chapters’ later in the manual.

These programs are grouped for convenience: prepare-input; spectrum (programs that simulate

NOESY spectra from structures); shifts (programs that compute chemical shifts from a structure in pdb
file format); and correlation_functions (programs that compute time-correlation functions of interest in
NMR relaxation).

(1)

2)

3)

makeCHIR_RST: A shell script that reads in a pdb file, and outputs sander- style constraints
to maintain chirality about tetrahedral carbons, and to keep peptide bonds trans. See com-
ments at the beginning of the script for usage. NOTE: you must edit the output of this file if
you have cis peptide bonds. Generally, this program would be used with an AMBER-created
pdb file to create extra constraints that would be used when high-temperature annealing runs
are planned.

makeDIST_RST: Takes a "7-column" input file giving atom pairs and distance bounds and
produces input suitable for SANDER. The input has this format:

3 GLY HN 4LEUHA 35

where the first three columns identify proton #1, the second three identify proton #2, and the
final value is a distance upper bound. Common pseudo- atoms are defined in a "map" file (like
map.DG-AMBER, which translates pseudoatoms from disgeo into AMBER nomenclature).
The output can be used for input to sander, but you might want/need to hand-edit the output to
fine-tune the constraint weights and force constants, etc. You should certainly check the
AMBER output carefully (try setting LISTIN=POUT) in order to be sure that AMBER is
interpreting the restraints the way you want it to.

makeDIST_RST.c can just be compiled with a "C" compiler. Then cd to the test directory and
run "testit". Compare your output with the *.scripps files. These files will also give you an
idea of what "real" input looks like.

The input to makeDIST_RST probably doesn’t match exactly anything you have. The intent is
that this "7-column" format is probably easier for you to create than raw SANDER input is, so
that this program might help.

makeANG_RST: A similar script to take torsion angle upper and lower bounds, as determined
by coupling constant measurements, and convert to SANDER input. This program takes as
input a five-column dihedral angle and J coupling constant file along with a pdb file of the
DNA molecule that these angles refer to. It creates as output (to standard out) a list of con-
straints that is readable by AMBER.

The angle file should look something like this:

1/30/113

SANDER module Auxiliary programs Page 143

“4)

&)

(6)

(7

()

(€))

GUA 1 PPA 111 144

CYT 2 EPSILN 20 100
CYT 2 PPA 115 134

THY 3 ALPHA 20 35
ADE 4 GAMMA 54 78
GUA 5 J1P2P 2 3
CYT 6 J2P3P 0 4
THY 7 J3P4P 4 0

The first column is the residue name (three letter code). The second is the residue number.
Third is the angle (or coupling constant) name. Fourth is the lower bound. Last is the upper
bound. The angles that are currently supported follow:

ALPHA BETA GAMMA DELTA EPSILN ZETA CHI PPA

PPA stands for Pseudorotation Phase Angle. When a constraint of this type is encountered, it
is expanded into the dihedral angles NUO-NU4. This is a redundant constraint if you are using
coupling constant constraints for the ribose ring.

For coupling constants which are not precisely known, a zero can be entered as the upper or
lower bound (see example above for CYT 6 and THY 7) to specify a restraint that enforces J
coupling to be less than the upper bound (for lower bound=0) or greater than the lower bound
(for upper bound=0). The coupling constants that are currently supported are:

J1IP2P J1P2D J2P3P J2D3P J3P4P

Where a P refers to > and a D refers to ** (single and double prime). These are redundant con-
straints if you are using PPA angle constraints. The pdb file is assumed to be AMBER pdb
since the program outputs constraints in AMBER format. Written primarily by Jarrod Smith
at Scripps; extensions of the definition files to proteins are planned.

makeNOEEXP: Helps prepare NOESY volume input files for sander. For now, documenta-
tion is at the top of the makeNOEEXPA file. The input is in a "7-column" format similar to
that used for makeRST, but the last column contains NOESY intensities rather than distance
bounds.

makeSHEF: A shell script that takes chemical shift information in human-readable format, plus
a pdb file, and produces sander input for chemical shifts. For now, the user instructions are at
the top of this file.

mdovrly: Routine that takes coordinates from an SANDER molecular dynamics run and over-
lays them by doing translations and rotations to provide a best overall fit. This program gener-
ally then feeds into the next one:

mdextract: This takes an (overlaid) coordinate stream and extracts inter-atomic vectors as a
function of time. This program in turns leads to:

mdcorrp2: This routine computes time-correlation functions of interest to fluorescence depo-
larization and spin relaxation.

intense: This is a stand-alone program that computes intensities of a NOESY spectrum given
an input pdb-file.

1/30/113

SANDER module Auxiliary programs Page 144

(10)

(1)

spectrum: This program takes the output of intense and creates an "smx"-file in the format
used by the ftnmr program from Hare Research. This, in turn, can easily be converted to Felix
"mat" format using programs that come with that package.

shifts: This program essentially is abstracted from sander, and allows chemical shifts to be cal-
culated from a pdb-file, without having to set everything up and run AMBER. It is intended
just as a simple "one-step" program to compute chemical shifts for a given structure. If the
pdb-file was not generated from AMBER, (e.g., it was taken from Brookhaven, or made in
some other way,) it should be run through protonate (g.v.) first; this of course now makes
it a "two-step" procedure(!). Instructions for shifts are currently at the top of this shell script.

1/30/113

SANDER module Theory Page 145

Overview of NMR refinement using SANDER

We find the SANDER module to be a flexible way of incorporating a variety of restraints into a
optimization procedure that includes energy minimization and dynamical simulated annealing. How-
ever, there is not, as yet, a generally-accepted and complete "recipe" for obtaining solution structures
from NMR data. The comments below are intended to provide a guide to some commonly-used pro-
cedures.

Sander is part of a general environment for performing molecular refinements using nmr data as
input. Generally speaking, the programs required to do this can be divided into three parts: 1) front-
end modules, which interact with nmr databases that provide information about assignments, chemical
shifts, coupling constants, NOESY intensities, etc.; 2) restrained molecular dynamics, which is at the
heart of the conformational searching procedures; and 3) back-end routines that do things like compare
families of structures, generate statistics, simulate spectra, and the like.

Sander provides facilities for carrying out the molecular dynamics part of this scheme. Some of
the front-end and back-end programs that we use in conjuction with sander are provided in the
nmr_aux subdirectory. The basic front-end program is makeDIST_RST, which converts information in
assignment databases into sander format. Different NMR-processing programs will clearly require
somewhat different input processing. We mostly use Felix, marketed by Biosym, and have developed
macros for that package that will automatically create input files for makeDIST_RST. If you are inter-
ested in this option, please contact Dave Case (case@scripps.edu) for up-to-date information. We are
happy to provide these to anyone who wants them, but we have not included them in the standard
AMBER distribution, since they are still in a state of development.

The principal back-end programs we use are intense and spectrum, which compute NOESY or
ROESY spectra, and the correlation function analysis programs mdcorrp2 (and their companions).
Details about these programs are given below. The superpose program is also useful in making multi-
ple structure comparisons among a family of NMR-derived structures. Many other programs are avail-
able elsewhere for graphical and tabular examination for bioplymer structures.

1/30/113

SANDER module Theory Page 146

| Refinements using distance and angle restraints.

The most common approach at present is to interpret NOESY intensities as distance constraints
and coupling constants in terms of dihedral angle constraints. To implement this, set nmrmax = 1 and
provide input for sections one to four. The plastocyanin subdirectory in the demo files provides some
examples from our work, including a demonstration of how to set up a simulated annealing protocol.

In carrying out such simulations, it is common to modify the standard force field. The ifstrp
variable allows one to treat nonbonded interactions as soft repulsions with no electrostatic contribu-
tions. Since bonds and angles are kept close to ideal values by the force constants inherent in the stan-
dard force field, and since the intrinsic dihedral barriers for single bonds are also quite small, this pro-
vides a "generic" or simplified representation of the allowed conformational space that may appeal to
some users.

Other users will wish to use force fields that incorporate more of what we know about relative
conformational energies, i.e. a more elaborate force field. Even here, though, some modifications may
be advisable. For example, modifications we have found useful for peptides/proteins include increas-
ing the torsional force constant for the peptide bond (to reduce the tendency of restained simulations to
produce badly distorted bonds) and a reduction in the net charge of charged side chains (to compensate
in part for neglect of explicit solvent). These changes are incorporated into a database and a frcmod
file in the src/nmr_aux/forcefield subdirectory; see the README file in that directory.

Also in the dat/nmr directory is a script, makeCHIR_RST, which creates constraints relating to
chirality and peptide bonds. Use of these constraints will ensure that high-temperature annealing runs
do not destroy chirality or flip peptide bonds. Instructions are in the comments at the beginning of that
shell script.

The basic ideas of this scheme owe a lot to the general experience of the nmr community over
the past decade. Some good papers to look at are:

(1) "Determination of the three-dimensional structures of proteins and nucleic acids in solution by
nuclear magnetic resonance spectroscopy", by G.M. Clore and A.M. Groenenborn, Crit. Rev.
Biochem. Mol. Biol. 24, 479-564 (1989). A fairly comprehensive review of the field through
1988.

(2) "Computational methods for determining protein structures from NMR data," by G.P. Gippert,
PF. Yip, P.E. Wright and D.A. Case, Biochem. Pharm. 40, 15-22 (1990).

(3) "Determination of high resolution NMR structures of proteins", by D.A. Case and P.E. Wright,
in NMR in Proteins, G.M. Clore and A.M. Gronenborn, eds. (New York: McMillan, 1993), pp.
53-91.

(4) D.A. Case, HJ. Dyson and PE. Wright. Use of chemical shifts and coupling constants in
nuclear magnetic resonance structural studies on peptides and proteins. Methods in Enzymol-
0gy 239,392-416 (1994).
These last three papers outline procedures in the Scripps group, from which a lot of the NMR
parts of SANDER are derived. They are by no means the only way to proceed. We hope that
the flexibility incorporated into SANDER will encourage folks to experiment with refinement
protocols.

1/30/113

SANDER module Theory Page 147

Time-averaged restraints

Time-averaged bonds and angles are calculated as

-1/ipower

t
F = (1/0) { f Ty qy! } (1)
0
where
r = time-averaged value of the internal
t = the current time
T = the exponential decay constant
r(t’) = the value of the internal at time t’
ipower = average is over internals to the inverse of ipower. Usually ipower = 3 or 6 for
NOE distances, and —1 for angles and torsions (linear averaging).
C = a normalization integral.

Time-averaged torsions are calculated as
< ¢> = atan(< sin(¢g) >/ < cos(¢) >) 2)

where ¢ is the torsion, and < sin(¢) > and < cos(¢) > are calculated using the equation above with
sin(¢(t")) or cos(¢(z")) substituted for r(t’).
Forces for time-averaged restraints can be calculated either of two ways. This option is chosen
with the DISAVI / ANGAVI / TORAVI commands (Section 1). In the first (the default),
0E/dx = (QE/Jr) (9r/or(r)) (or(t)/ox) 3)

(and analogously for y and z). The forces then correspond to the standard flat-bottomed well func-
tional form, with the instantaneous value of the internal replaced by the time-averaged value. For
example, when r; < 7 < ry,

E = ky(F - r3)’)
and similarly for other ranges of 7.

When the second option for calculating forces is chosen (IINC = 1 on a DISAVE, ANGAVI or
TORAVI card), forces are calculated as

0E/ox = (OE/dr) (or()/dx) . (5)
For example, when r; < 7 < ry4,
0E/0x = 2 k3 (r —r3) (Or(t)/dx) . 6)

Integration of this equation does not give Equation (4), but rather a non-intuitive expression for the
energy (although one that still forces the bond to the target range). The reason that it may sometimes
be preferable to use this second option is that the term 07/dr(¢), which occurs in the exact expression
[Eq. (3)], varies as (#/r(1))"*7°"*". When ipower=3, this means the forces can be varying with the
fourth power the distance, which can possibly lead to very large transient forces and instabilities in the
molecular dynamics trajectory. [Note that this will not be the case when linear scaling is performed,
i.e. when ipower=—1, as is generally the case for valence and torsion angles. Thus, for linear scaling,

1/30/113

SANDER module Theory Page 148

the default (exact) force calculation should be used].

It should be noted that forces calculated using Equation (5) are not conservative forces, and
would cause the system to gradually heat up, if no velocity rescaling were performed. The tempera-
ture coupling algorithm should act to maintain the average temperature near the target value. At any
rate, this heating tendency should not be a problem in simulations, such as fitting NMR data, where
MD is being used to sample conformational space rather than to extract thermodynamic data.

This section has described the methods of time-averaged restraints. For more discussion, the
interested user is strongly urged to consult recent studies:

(1) "Time Averaged Nuclear Overhauser Effect Distance Restraints Applied to Tendamistat" by
A E. Torda, R.M. Scheek & W.F. van Gunsteren (1989) J. Mol. Biol. 214, 223-235; and

(2) "Are Time-Averaged Restraints Necessary for NMR Refinement: A Model Study for DNA" by
D.A. Pearlman and P.A. Kollman (1991) J. Mol. Biol. 220, 457-479.

(3) "Structure refinement using time-averaged J-coupling constant restraints", by A.E. Torda, R.M.
Brunne, T. Huber, H. Kessler and W.F. van Gunsteren, (1993) J. Biomol. NMR 3, 55-66.

1/30/113

SANDER module Theory Page 149

Refinements using NOESY and chemical shift restraints.

Refinement directly against measured NOESY and chemical shift restraints is the newest and

most specialized functionality of the SANDER module. These can be used in either of two modes:

ey

2

"Single-point" mode (imin=1, maxcyc=1, nrun=0). In this case, the NOESY intensities or ring
current contributions can be calculated for a given structure. Allows "back calculation" of the
spectrum corresponding to a putative conformation.

Dynamic refinement mode. In this case, measured NOESY and chemical shift data are
included in penalty functions that depend upon (I — I;) where I, is the experimentally mea-
sured value, and [is the value corresponding the current conformation; the functional form of
the penalty depends upon the ipnlty variable. Careful experimentation will undoubtedly be
required for each data set to define a reasonable penalty function. Simply weighting each
observed peak equally (with the default values of awr and arange) is almost certainly a bad
idea, since this effectively gives too much influence to the strong peaks at the expense of
longer-range information. Several groups are trying calculations such as these, and some gen-
eral guidelines about penalty functions should emerge soon.

Users of direct NOESY and chemical shift restraints are encouraged to contact Dave Case

(case@scripps.edu) to enquire about updates to these sections, and for information about auxiliary
programs that help in the preparation of the input files that SANDER needs. Some good references to

look at are:

(1) "Characterization of biomolecular structure and dynamics by NMR cross relaxation," by R.
Betiweiler and D.A. Case. Progress in NMR Spectroscopy, 26, 27-58 (1994). Detailed exposi-
tion of most of the theory behind NMR dipolar relaxation simulations.

(2) "A new analysis of proton chemical shifts in proteins,", by K. sapay and D.A. Case. J. Am.
Chem. Soc. 113,9436-9444 (1991). Presents the chemical shift algorithm used in SANDER.

(3) R. Briischweiler and D.A. Case. A collective NMR relaxation model applied to protein

dynamics. Physical Review Letters 72, 940-943 (1994). Discusses ways in which normal
modes can be used to compute motional correction factors ("order parameters"); this facility is
built into SANDER.

1/30/113

SANDER module Card image input Page 150

| Card image input |

This section is provided for those who still wish to use the older formatted input for section
ONE. Since interface also uses this format, this section will also be of interest to those who wish to
modify the interface definition for sander. Descriptions of all of the variables are given above.

-1 - TITLE

FORMAT (20A4)

TITLE Title of the md-run for identification.
- 2 - 1)TIMLIM 2)IREST 3)IBELLY 4)KFORM 5)ICHDNA 6)IMIN
7)IPOL 8) IEWALD

FORMAT (F10.0,10I5)
Namelist defaults: 999999., o, o0, 1, o0, 0, O, O

-3 - 1)NTX 2)NTXO 3)NTCX 4)IG 5)TEMPI 6)HEAT

FORMAT (3I5,I10,2F10.5)
Namelist defaults: 1, 1, 0, 71277, 0.0, 0.0

NTCX is read but not used.
-4 - 1)NTB 2)IFTRES

FORMAT (2I5)
Namelist defaults: 0, 1

-5 - 1)NRUN 2)NTT 3)TEMPO 4)DTEMP 5)TAUTP 6)TAUTS 7)ISOLVP
8)VLIMIT

FORMAT(2I5,4F10.5,1I5,F10.5)
Namelist defaults: 1, 0, 300., 0.0, 0.2, 0.2, 0, 0.0

1/30/113

SANDER module Card image input Page 151

-6 - 1)NTP 2)PRESO 3)COMP 4)TAUP 5)NPSCAL

FORMAT (I5,3F10.5,1I5)
Namelist defaults: 0, 1.0, 44.6, 0.2, O

-7 - 1)NDFMIN 2)NTCM 3)NSCM

FORMAT (315)
Namelist defaults: 0, 0, 0

-8 - 1)NSTLIM 2)INIT 3)NTU 4)T 5)DT 6)TAUVO 7)TAUV 8) VZERO

FORMAT(3I5,5F10.5)
Namelist defaults: 1, 3, 1, 0.0, 0.001, 0.0, 0.1, 0.0

-9 - 1)NTC 2)NTCC 3)NCONP 4)TOL 5) JFASTW

FORMAT (3I5,F10.5,15)
Namelist defaults: 1, 0, 0, 0.0005, O

NTCC and NCONP are read but not used.

- 10 - 1)NTF 2)NTID 3)NTN 4)NTNB 5)NSNB 6)IDIEL 7)IMGSLT
8)IPRR 9)IPRW

FORMAT (915)
Namelist defaults: 1, o0, 1, 1, 25, 1, 0, 0, O

NTN is read but not used.
- 11 - 1)CUT 2)SCNB 3)SCEE 4)DIELC, 5) CUT2ND

FORMAT (5F10.5)
Namelist defaults: 8.0, none, none, 1.0, 0.0

- 12 - 1)NTPR 2)NTWX 3)NTWV 4)NTWE 5)NTWXM 6)NTWVM 7)NTWEM
8)NTPP 9)IOUTFM 10)NTWPRT

1/30/113

SANDER module Card image input

FORMAT (1015)
Namelist defaults: 50, 0, 0, 0, 999999, 999999, 999999,

NTPP is read but not used.

- 13 - 1)NTR 2)NRC 3)NTRX 4)TAUR 5)NMRMAX 6)ISFTRP
7)RWELL 8)PENCUT

FORMAT(3I5,F10.5,21I5,2F10.5)
Namelist defaults: 0, 0, 1, 0.0, 0, 0, 0.0, 0.1

NRC and TAUR are read but not used.

- 14 - 1)IVCAP 2)MATCAP 3)FCAP

FORMAT (2I5,F10.5)
Namelist defaults: 0, 0, 0.0

-15 - 1)MAXCYC 2)NCYC 3)NTMIN 4)DX0 5)DXM 6)DELE 7)DRMS

FORMAT (3I5,4F10.5)
Namelist defaults: 1, 10, 1, 0.01, 0.5, 0.001, 0.001

DELE is read but not used.
Note: this line must be present even if no minimization is

Page 152

requested (blank line ok). Minimization is requested using IMIN

(line 2).

—- This card is read only if JFASTW (9.5) = 2 or 3 --
- 16 - 1)WATNAM 2)OWTNM 3)HWTNM1 4)HWTNM2

FORMAT (4A4)
Namelist defaults: "WAT ", "O ", "H1 ", "H2 "

-- This card is read only if NMRMAX (13.5) >2 --

- 17 - 1)ISCALE 2)NOESKP 3)IPNLTY 4)MXSUB 5)SCALM 6)TAUSW

1/30/113

SANDER module Card image input Page 153

FORMAT (4I5,2F10.5)
Namelist defaults: 0, 1, 1, 1, 100., 0.1

-- These card is read only if IPOL (2.5) > 1 --

This information must be provided in the formatted form given,
even if namelist format input is used above.

- 18- 1) N3B, NION
FORMAT (2I5)
- 19 - IDENTIFICATION OF ATOMS WITH POSITION CONSTRAINTS

*%% ONLY IF NTR = 1 **%*

See the GROUP section in the Appendices for format.

- 20 - IDENTIFICATION OF ATOMS WHICH MOVE IN A BELLY SIMULATION
*%% ONLY IF IBELLY.GT.Q ***

See the GROUP section in the Appendices for format.

1/30/113

GIBBS module Page 154

GIBBS

Usage: gibbs [gibfile] [-O] -i gibin -o gibout

-p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden
-inf mdinfo -ms micstat

-cm constmat -cs cnstscrt -a patnrg

Overwrite output files.

GIBBS/AMBER 4 x is a major functionality revision of AMBER/GIBBS by

€]
2
3)
(C))

)

David A. Pearlman *

Dept. of Pharmaceutical Chemistry

University of California, San Francisco

San Francisco, CA 94143-0446 (415) 476-4637

* Current Address:

Vertex Pharmaceuticals

40 Allston Street

Cambridge, MA 02139-4211 (415) 576-3111
dap@vpharm.com

The 4.1 release incoporates the ability to carry out polarizability calculations. The
polarizabilty code is by Jim Caldwell and Liam Dang, and was ported to
Gibbs/Amber by Jim Caldwell.

Other features new to the 4.1 release include:

The ability to carry out Potential of Mean Force calculations when using the Thermodynamic
Integration method. (dap, 8/92)

The introduction of code that allows TIP3P water-water non-bonded interactions to be calcu-
lated MUCH faster than before (dap,dac, 4/93)

The ability to calculate free energy derivatives. (dap, 8/91)

Implementation of a much faster analytic version of SHAKE for 3-point waters (Using an
algorithm and routine written by Shuichi Miyamoto, J. Comp. Chem., 13, 952 (1992)). (dap,
12/92)

The ability to determine free energy contributions on a per-atom basis. (dap, 6/91)

1/30/113

GIBBS module Page 155

(6)
(7
®)

(€))
(10)

The introduction of an optional secondary cutoff. Interactions in the range between the pri-
mary and secondary cutoffs are only calculated every non-bonded update. (dap, 12/92)

The introduction of an optional different cutoff for interactions between the perturbed group
and the remainder of the system. (dap, 12/92)

Additional consistency checking when control parameters are read. (dap, Bill Ross)
Various minor improvements.

Incorporation of published bugfixes (as posted on the Amber mail list)

GIBBS is built upon the original (3.0) version of this code, which was written by U.C. Singh
and P.A. Kollman (UCSF), using numerous MD routines adapted from GROMOSS83 by W.F.
van Gunsteren. Speedups to non-bonded pairlist generation and residue-based imaging adopted
from code written by George Seibel for AMBER revision 3A.

1/30/113

GIBBS module Page 156

Background

This module of the AMBER suite of programs calculates the free energy difference, AG,
between two states "0" and "1":

AG =G, -G, . (1)

State 1 is defined in the AMBER PREP module. State 0 is defined in the PARM module. The free
energy difference is calculated in a series of incremental steps which connect physical states 1 and 0
through a series of not-necessarily-physical intermediates. The character of the system at each of these
intermediate steps is related to a parameter A.

Free Energy Techniques Available in GIBBS Version 4

There are several techniques available in GIBBS/AMBER 4.0 for evaluating the free energy dif-
ference between two states, all based on various statistical mechanical relationships. These include:

(1) Free Energy Perturbation (FEP) Window Growth: The free energy is calculated at discrete and
uniformly spaced intervals of A using the formulae:

Gy = Gapy = = RT In<exp (Va1 = Vi)' RT1 >3 @
AG = G -Gy = X G = G 3)
l

where G and G, are the free energies of states 0 and 1, respectively, V;; is the potential

energy function representative of state A(i), and <>,y means use the ensemble average of the
enclosed quantity, representative of state A(i). The ensemble is evaluated from an MD trajec-
tory run with V =V, The user specifies the numbers of equilibration (NSTPE or NSTMEQ)
and data collection (NSTPA or NSTMUL) steps for each A())—A(i +1) "window".

(2) Slow growth — the same as window growth, except lambda changes by a small amount at every
step. Lambda changes slowly enough that it is assumed the system remains in equilibrium at
every step (i.e. NSTPE=0, NSTPA=1). Thus the ensemble average in Equation (2) is replaced
by its instantaneous value at each step.

(3) Thermodynamic integration — instead of Equations (2) and (3), we use
1
G, -G, = f< VIO >, dA 4)
0

to calculate the free energy difference. In practice, the integral is approximated by a summa-
tion over discrete intervals in A.

(4) Dynamically Modified Windows — the equations of FEP (2 and 3) are used as described for
method 1 above. But instead of using pre-chosen uniformly-spaced intervals of 4, the width
(A = A +1) - AQ)) of each window is determined during the run, based on the recent value
of the slope, dG/04, of the accumulated free energy versus A curve. This allows the simulation
to be run more "slowly" when the free energy is changing very quickly, and more "quickly"
when it is not.

1/30/113

GIBBS module Page 157

(5) Dynamically Modified Thermodynamic Integration — Uses the same A adjustment algorithm
as for FEP (method 4), but the intervals in A correspond to the points at which the integrand in
Equation (4) is evaluated to approximate the integral.

(6) Potential of Mean Force (PMF) Calculations — the user can elect to constrain any chosen set of
internals (distances, angles, torsions) to a chosen lambda-dependent pathway. By selecting the
appropriate option (NCORC=1), the contribution to the free energy from such constraints will
be calculated. This constitutes a PMF calculation. PMF calculations can be carried out as part
of either a FEP Window Growth or Dynamically Modified Windows run (1 and 3 above).

Understanding the Output ‘

(a) WINDOW GROWTH, SLOW GROWTH, DYNAMICALLY MODIFIED WINDOWS: At speci-
fied intervals during the simulation, the energies calculated up to that point will be reported in the for-
mat:

Current Lambda = 0.850000
Last F.E. update: Lambda = 0.800000 Step = 4000 Method = F.E.P.
Accumulated "forward" quantities (Nonbond change)
Lam+d_lam = 0.850000 F_energy = +0.64300
ELEC = 0.000 NONB = +0.643 14NB = 0.000
14EL = 0.000 BADH = 0.000
Accumulated "reverse" quantities (Nonbond change)
Lam-d_lam = 0.750000 F_energy = -0.62130
ELEC = 0.000 NONB = -0.621 14NB = 0.000
14EL = 0.000 BADH = 0.000

When the free energies reported were last updated, the values of lambda and step number were
as given on the second line. Note that the current values of A and Step may be different, if the free
energies have not yet been updated to reflect the ensemble now being generated. Also reported on the
second line is the method being used to calculate free energy differences: F.E.P. is Free Energy Pertur-
bation (standard or Dynamically Modified Windows); T.I. is Thermodynamic Integration (standard or
Dynamically Modified Windows); Slow Growth is self explanatory.

Both "forward" and "reverse" accumulated free energies are reported. By default, GIBBS carries
out "double-wide sampling", which means that at every value of A we calculate the free energies both
for going A—=A + 6 A and for going A — A - A. The values "Lam+d_lam" and "Lam-d_lam" which
are reported were the values at the last free energy update. If there were no sampling errors in our cal-
culations, the independent sums of the "forward" and "reverse" values over the entire simulation would
be the same, except for sign. Their actual difference gives us a lower bound on the error. By conven-
tion, the "forward" energy always corresponds to the energy for the process represented by A increas-
ing 0—1. Similarly, the "reverse" energy corresponds to the process represented by A decreasing
1—0. This is true regardless of the direction in which the actual simulation was run.. Note that this
differs from the confusing convention used in older versions of GIBBS.

Along with the total accumulated free energies in the "forward" and "reverse" directions, a com-
ponent breakdown of the energies is given. Components listed include: ELEC (electrostatics, except
1-4’s); NONB (non-bonds, except 1-4’s); 14NB (1-4 nonbonds); 14EL (1-4 electrostatics) and BADH
(bonds, valence angles and torsion angles). Note that for Windows and Dynamically Modified

1/30/113

GIBBS module Page 158

Windows, these components are only estimates. For slow growth and thermodynamic integration, they
are exact.

If PMF calculations are performed, a sixth component will be listed, CORC. The procedure used
to perform a PMF makes it difficult to separate contributions due to the constraints themselves from
those due to non-bonded/electrostatic interactions. For this reason, in these cases CORC will reflect
the sum total of all three types of contributions and the individual non-bonded/electrostatic contribu-
tions will be reported as 0’s.

(b) THERMODYNAMIC INTEGRATION: The output is similar to that described above, except
that, because of the integral which must be evaluated in thermodynamic integration (TI) (Equation 4),
double-wide sampling is not possible. Thus, only a "forward" set of energies is reported. Again, by
convention, these value have the sign appropriate for the 0—1 conversion, regardless of the direction
in which the simulation was actually run.

If the calculation of individual entropy/enthalpy contributions is requested, these will also be
included in the output, following the same forward/reverse conventions as above.

Defining States and Obtaining Appropriate Starting Coordinates

The state defined in PREP is the A=1 state and the state given in the PARM is the A=0 state. The
default state from which to start the perturbation is usually A=1, because the coordinates which are
carried from EDIT to PARM to MIN to GIBBS will corresponds to the PREP state. However, you can
equilibrate at either A=1 or A=0 (or any arbitrary value of 1) as follows:

Set ISLDYN (line 14) to +-2 or +-3;

Set NRUN (line 5) to 1;

Set NSTLIM (line 8) to the number of steps of equilibration desired;

Set ALMDA (line 14) to the value of A at which equilibration is to take place;
And set NSTMEQ (line 14) to any value greater than NSTLIM.

The program is capable of handling periodic boundary conditions with the solute in a solvent
bath either with constant volume or constant pressure. All the data required for boundary conditions is
passed from the EDIT and PARM modules. Additionally, it is possible to decouple the free energy
into electrostatic and van der Waals contributions, if desired.

1/30/113

GIBBS module Page 159

SUGGESTED INTRODUCTORY REFERENCES

General Review:

ey

2

3)

“4)

&)

(6)

(7

®)

D.L. Beveridge and F.M. Di Capua (1989) "Free Energy Via Molecular Simulation: Applica-
tions to Chemical and Biomolecular Systems." Annu. Rev. Biophys. Biophys. 18, 431-492.

Discussion of issues pertinent to free energy perturbation:

D.A. Pearlman and P.A. Kollman (1989) "Free Energy Perturbation Calculations: Problems
and Pitfalls Along the Gilded Road." In: Computer Simulation of Biomolecular Systems: The-
oretical and Experimental Applications (W. van Gunsteren and P.K. Weiner, eds.), pp.
101-119, Escom Science Publishers, Netherlands.

W.F. van Gunsteren, "Methods for Calculation of Free Energies and Binding Constants: Suc-
cesses and Problems," ibid, pp.27-59.

D.A. Pearlman and P.A. Kollman (1989) "The Lag Between the Hamiltonian and the System
Configuration in Free Energy Perturbation Calculations." J. Chem. Phys. 91, 7831-7839.

D.A. Pearlman and P.A. Kollman (1991) "The Overlooked Bond-Stretching Contribution in
Free Energy Perturbation Calculations." J. Chem. Phys. 94, 4532-4545.

Description and characterization of dynamically modified windows:

D.A. Pearlman and P.A. Kollman (1989) "A New Method for Carrying Out Free Energy Per-
turbation Calculations: Dynamically Modified Windows." J. Chem. Phys. 90, 2460-2470.

Descriptions of general holonomic internal constraints:

D.J. Tobias and C.L. Brooks, III (1988) "Molecular Dynamics with Internal Coordinate Con-
straints." J. Chem. Phys. 89, 5115-5127.

Description of an application of internal-internal free energy map generation:

D.A. Pearlman and P.A. Kollman (1991) "Evaluating the Assumptions Underlying Force Field
Development and Application, Using Free Energy Conformational Maps for Nucleosides." J.
Am. Chem. Soc. 113,7167-7177.

In addition, it is strongly suggested that the user read the discussion which follows the descrip-
tion of the input variables before using GIBBS.

1/30/113

GIBBS module Page 160

Features new to Version 4.0 of GIBBS (6/91): ‘

-> Ability to use dynamically modified windows

-> Ability to perform thermodynamic integration calculations.

-> The ability to carry out potential of mean force (PMF) calculations about any chosen set of internal
coordinates

-> The ability to define lambda-dependent restraints for any chosen set of internal coordinates.

-> Can easily perform the PMF bond length change correction.

-> Improved parameter mixing for dummy/real atom interactions

-> The ability to use both the standard "amber" type of mixing for FEP, and the dual topologies method
used by e.g. CHARMM.

-> Enthalpies/entropies can be calculated.

-> Several new temperature coupling options have been introduced, including separate solute/solvent
coupling.

-> Perturbation parameters can be different over different ranges of lambda

-> Non-bonded perturbation pairs of atoms which are represented as a hydrogen bond (10-12) in the
initial and/or final states are now handled correctly

-> A MICSTAT file is output with dynamically modified windows, which contains a concise history of
the free energy change per window.

-> Double-wide sampling can be turned off

-> Ability to use analytic derivatives in slow growth simulations.

-> Periodic imaging can now be done on a residue basis. Imaging is general, and will work for any type
of solvent. This allows the cutoff to be >= 1/2 the box width.

-> Intra-perturbed group contributions to the free energy can be calculated, at the user’s discretion.

-> User can request pre-SHAKE coordinates to be written to a restart file when SHAKE fails. User can
also request program attempt to continue upon a SHAKE failure.

-> A standard method for assigning file names which works on all computers is available.

-> Namelist-type input is optionally available.

-> Numerous bug fixes have been incorporated.

-> Output has been improved and clarified.

-> And more!

1/30/113

GIBBS module Page 161

Assigning files in version 4

GIBBS, version 4, incorporates a new file assignment protocol which is easy to use, and which
will work on all computers. In addition, on Unix machines, file assignments can optionally be speci-
fied using flags on the command line, as in version 3A.

For Unix machines (only), the program is invoked:

gibbs [gibfile] [-0] [-i PIN] [-p PPARM] [-c PINCRD]
[-0 POUT] [-r PREST] [-inf PINFO] [-ms MICSTAT]
[-cm CONSTMAT] [-cS CNSTSCRT]
[-x PCOORD] [-V PVEL] [-e PEN] [-ref PREFC]

where PIN, PPARM, etc. are replaced by the appropriate filenames to be assigned. The meanings of
the various files are given below.

If "gibfile" is present, it must be the first option given, and this file will be read to make the file
assignments. In this case, any remaining flags are ignored. Otherwise, all assignments are made using
command-line flags. Any flags not specified default to the given name (e.g. if -o is not specified, out-
put would be in file POUT).

For other machine types (and if gibfile is given on a Unix machine), file assignments are read at
run-time from a file named "GIB.FILE" (non-Unix machines) or the file specified as "gibfile" (Unix
machines). GIB.FILE contains file assignments, one per line, in the following format:

Filetype = Filename

"Filetype" is the type of file, from the list of GIBBS /O file assignments listed below. It must be given
in upper case letters. Filename is the actual name to be used in opening that file. E.g.

POUT = test.out

would place the results and diagnostics in a file named test.out. The order in which files are defined is
not important. Any line that does not contain the "=" character will be considered a blank line. The
GIB FILE file is opened and read when the run is commenced, and then closed. Once the file defini-
tions have been read, the user is free to discard or change the GIB.FILE file (to e.g. start up a second
Gibbs run).

1/30/113

GIBBS module

Page 162

GIBBS IO FILE ASSIGNMENTS

file

INPUT:

PIN

PPARM

PINCRD

PREFC

OUTPUT:

POUT

PREST

PINFO

MICSTAT

CONSTMAT

CNSTSCRT

PCOORD

PVEL

PEN

unit

10

16

27

28

42

12

15

purpose

Control data for the run (described below).
Topology file (created by PARM)
Initial positions and (optionally) velocities.

Reference coordinates for optional position
restraints (only if NTR = 1)

Formatted results and diagnostics

Restart coordinates and velocities.
For restarts, this file should be assigned to PINCRD.

Short file containing a summary of current energies.
For monitoring runs which are executing.

A concise summary of important energy information
for each window/interval.

Contains data related to the matrix of free

energy data generated. Only used when IPER>0 for
one or more of the constraints/restraints defined
with INTR > 0 (see line 13).

Contains data required when generating

a matrix of free energies corresponding to two
independent sets of constraints (IPER>0 and INTR>0;
see line 13).

Archived coordinate sets (if NTWX > 0)

Archived velocity sets (if NTWV > 0)

Archived energy related data (if NTWE > 0)

1/30/113

GIBBS module Page 163

’ CONTROL PARAMETERS - READ FROM FILE ’PIN’

The title (line 1) must be the first line in PIN. All remaining standard flags may be specified either in
the formatted form described below, or using the "namelist" convention. The namelist name is &cntrl.
The namelist convention is described in Appendix B of the manual.

Note that for each input field, the namelist default is given. This
default is used only if namelist-form input is used. When formatted
input is provided, the default value for every field is 0 or 0.0,
except where explicitly noted below.

-1 - TITLE
FORMAT (A80)
TITLE Title of the md-run for identification.
-2 - TIMLIM, IREST, IBELLY, IDUM, ICHDNA, IPOL, I3BOD

FORMAT (F10.0,10I5)
Namelist defaults: 999999., o0, o0, 1, 0, 0, O

2.1 TIMLIM Time limit for the job (in seconds).
2.2 IREST Flag to restart the run.
= 0 Normal start
= 1 Job to be restarted. The accumulated free energies,
current value of lambda, and other required quantities
are read from the end of the input coordinate file
(PINCRD). This file should be the PREST file written
by the simulation being restarted.
2.3 IBELLY Flag for belly type dynamics.
= 0 No belly run (allow all atoms to move).
= 1 Belly run. The subgroups of atoms which are allowed to
move are read as groups from file PIN. See the section
on GROUP in the Appendices.

2.4 IDUM Read but not used.

2.5 ICHDNA Option to modify the charge of end hydrogens during

1/30/113

GIBBS module Page 164

in vacuo simulations. Without this option, molecular dynamics
calculations on nucleotides will result in bonding between the

5’ and 3’ hydrogens and the corresponding phosphate groups.

=0 no charge modification

=1 modify charge

2.6 IPOL for inclusion of polarizabilities in the force field.

0 non polar calc (no polarizabilities read from "prmtop").

1 turn on polarization calculation.

Note: polarization is expensive and is currently recommended

ONLY for investigation of polarization parameters.

2.7 I3BOD For 3-body terms with a polarization calc.
0 No 3-body terms to be defined.

1 Read and use 3-body interaction definitions (see card 18).

3-Body terms only have an effect when polarization is
turned on (IPOL=1).

- 3 - NTX, NTXO, IDUM, IG, TEMPI, HEAT

FORMAT(315,I10,2F10.5)
Namelist defaults: 1, 1, 0, 71277, 0.0, 0.0

3.1 NTX Option to read the initial coordinates and
velocities (also see 'INIT’: card #8).

Options 1-3 are used when no set of starting velocities
is available (e.g. when starting from a set of minimized

coordinates).

Options 4-5 are used when: 1) a starting set of velocities
is available (e.g. after MD equilibration or on an MD
RESTART); and 2) The coordinates/velocities were generated
with MD run either without periodic boundary conditions,
or with constant VOLUME periodic boundary conditions. (Box
dimensions, if any, are taken from the PARM file).

Options 6,7 are used when both a starting set of velocities
are available and the coordinates/velocities were generated

with MD run using constant PRESSURE periodic boundary

conditions.

=1 X is read; no velocity information read (Amber format)

1/30/113

GIBBS module

3.6

Page 165

2 X is read; no velocity information read (unformatted)

3 No longer an option

Do not use values of NTX >=4 when PINCRD was not generated

with a previous MD simulation.

4 X and V are read (unformatted)
5 X and V are read (Amber format)

Note: box dimensions only appear in coordinate files written
(as PREST) after simulations using periodic boundary

conditions (constant volume or constant pressure).

= 6 X, V and BOX are read (unformatted)
= 7 X, V and BOX are read (formatted)

NTXO Option to write the final coordinates and velocities.

= 0 X, V and BOX are written to file ’'PREST’ (unformatted)
=1 X, V and BOX are written to file 'PREST’ (Amber format)

IDUM read, but not used.

IG The seed for the random number generator. The MD
starting velocity is dependent on the random number generator
seed. The generator works most effectively when the seed is

large and an odd or a prime number (e.g. 71277).

TEMPI Initial temperature. If TEMPI > 1.0e-06, the
velocities are taken from a maxwellian distribution with
TEMPI (K). Choosing a low initial temperature (e.g. 10K)
allows the calculation to reach the equilibrium conditions
with the residual forces in the system during the initial
steps.

TEMPI is read but ignored if NTX > 3.

HEAT If ABS(HEAT) .GE. 1.0E-06, all the velocities are
multiplied by HEAT.

1/30/113

GIBBS module Page 166

-4 - NTB, IFTRES, BOXX(1l), BOXX(2), BOXX(3), BETA, IBXRD

FORMAT(2I5,4F10.5,1I5)
Namelist defaults: 0, 1, 0.0, 0.0, 0.0, 90.0, O

4.1 NTB Flag for periodic boundary conditions.
If NTB .EQ. 0 then the boundary conditions are NOT applied.
The periodic box may be rectangular or monoclinic depending
on the value of BETA.

= 0 no periodicity is applied
= 1 constant volume

= 2 constant pressure.

4.2 IFTRES Flag to remove the nonbonded cutoff from the
solute.

= 0 ALL solute - solute nonbonded interactions are
calculated, and the boundary conditions are not
applied to the solute. For simulations of highly
charged solutes in a water bath, it can be useful to
calculate ALL solute - solute nonbonded interactions
in order to reduce electrostatic problems. Note that
this option is intended for small solutes, and will
generate many more nonbonded pairs than the normal
method if the solute is large. This option is useful
for DNA and counterions. Note: if counterions are
added in edit, then they are considered part of the
solute.

= 1 Nonbondeds are evaluated normally.

Note: IFTRES will only have an effect when periodic boundary
conditions are employed (NTB > 0). When NTB=0, IFTRES=1

behavior (normal nonbond generation) always occurs.

4.3 BOXX(1..3) Lengths of the edges of the periodic box.
If IBXRD > 0, then the values specified here will be used.
Otherwise, the values specified here are ignored and
the values in the PARM output file (if NTX < 7) or
the values in PINCRD (if NTX >= 7) will be used.

4.4 BETA Angle between the x- and z- axes of the box in
degrees. The y- axis is assumed to be orthogonal to the
other axes. (0 < BETA < 180). The information given for
BOX(1l..3) above applies to BETA as well.

1/30/113

GIBBS module Page 167

Non-orthogonal systems do not currently work correctly.
Therefore, if IBXRD > 1, BETA must be set to 90.0.

4.5 IBXRD If IBXRD > 0, then the values of BOX(1l..3) and
BETA specified here will be used. Otherwise, the values
in the PPARM or PINCRD file will be used (see above).

-5 - NRUN, NTT, TEMPO, DTEMP, TAUTP, TAUTS, ISOLVP, NSEL,
DTUSE

FORMAT (2I5,4F10.5,2I5,F10.5)
Namelist defaults:
i, 1, 298.0, 10.0, 0.1, 0.1, O, O, 1.0

5.1 NRUN Number of MD-runs of NSTLIM steps to be performed.
Since the restart coordinates are written only at the end of
each run, it is sometimes desirable to break a long run into

a series of shorter steps.

If NRUN is set > 1, one should ensure that the number of
equilibration+data collection steps (if performing
windows/TI) divides evenly into NSTLIM (line 8).

The number of picoseconds of molecular dynamics is equal to
the product of NRUN X NSTLIM X DT.

NSTLIM and DT are found on line 8

5.2 NTT Switch for temperature scaling. Note that several of
the temperature coupling options available here are new to
version 4 of GIBBS. Several of these are rather ad-hoc, and
may not result in a thermodynamically relevant ensemble. (They
may be useful when using MD strictly to sample conformational
space) .

For free energy calculations, it is recommended you stick
with NTT = 0 (constant energy), NTT = 1 (constant temperature)
or NTT = 5 (constant temperature, separate solute/solvent
temperature scaling).

< 0 Re-assign random velocities whenever the current
temperature deviates by more than DTEMP from DTEMP0O (target
temperature), and every ABS(NTT) steps. Velocities are
assigned in a Maxwellian distribution. By default,
velocities are are reset for all atoms. If NSEL > 0 (see
below), NSEL atoms are selected at random each time a
velocity reassignment is to take place, and only those

1/30/113

GIBBS module

5.3

5.4

5.5

atoms have their velocities reassigned. (Be sure to set
DTEMPO to a very large value if you wish to disable its
action with this option).

Note that the procedure which assigns velocities makes the
assignments as if all particles possessed three independent
degrees of translational freedom. If SHAKE is used, this
will not strictly be the case, and the effective temperature
immediately after velocity assignment will be higher than
the target temperature. As velocity contributions along the
constrained directions are dissipated, the temperature will

rapidly adjust towards the target.

= 0 Classical dynamics. Never rescale/reassign velocities
after the start. [The total energy (kinetic +
potential) is conserved; same as in older versions of
GIBBS.]

= 1 Constant temperature, using the Berendsen coupling
algorithm. A single scaling factor for velocities is

used (same as in older versions of GIBBS).

= 2 Constant temperature, using the Berendsen coupling
algorithm. But only consider the solute temperature
in determining the velocity scaling on each step.
Could result in solvent atoms having very high
temperature, and not generally recommended.

= 3 Constant temperature, using Berendsen algorithm. But
only rescale when temperature deviates from TEMPO by
more than TEMPO. Single scaling factor.

= 4 When temperature deviates from TEMP0 by more than DTEMP,
do one quick scale of the velocities to bring them back
to TEMPO. Otherwise, do not scale.

= 5 Constant temperature, using the Berendsen coupling
algorithm, and with separate solute/solvent velocity
scaling factors. This option is recommended as a
replacement for NTT=1, and can help alleviate the "cold
solute/hot solvent" problem.

TEMPO Reference temperature at which the system is to be
kept if NTT not = 0.

DTEMP The deviation allowed in the constant temperature
MD-runs (read but ignored if NTT=0,1,2 or 5).

TAUTP Temperature relaxation time when NTT .gt. O.

1/30/113

Page 168

GIBBS module Page 169

This is a damping factor which prevents abrupt changes in the
system, if the temperature exceed specified deviations.
Generally, values for TAUTP should be in the range of 0.1-0.4.
Smaller values of TAUTP result in "tighter" coupling.

5.6 TAUTS If NTT=5, then TAUTP is the temperature relaxation
time for the solute, while TAUTS is the relaxation time for
the solvent. TIf is specified as 0.0, TAUTS is set equal to
TAUTP. Generally, TAUTS should be in the range of 0.1-0.4,
with smaller values resulting in "tighter" coupling.

If NTT.NE.5, TAUTS is read but ignored.

5.7 ISOLVP Only used if NTT = 2 or 5 (sep. solute/solvent temp
coupling)

= 0 default solvent atom pointer is used. If periodic boundary
conditions are being used, this is the last solute atom.
Otherwise, it will be the last atom of the system (which
results in no separate solute/solvent coupling). Note that
counterions are by default considered part of the _solute_

> 0 Gives the number of the last atom to be considered part
of the "solute". ISOLVP should generally be specified if
NTT = 5 and NTB = 0.

ISOLVP only affects temperature scaling.
5.8 NSEL Only used if NTT < 0 (random velocity reassignments)

= 0 When velocity reassignment takes place, velocities for
all atoms are reassigned.

> 0 When velocity reassignment takes place, NSEL atoms are
randomly selected, and only the velocities for those atoms

are reassigned.

5.9 DTUSE The value of d TEMP used in approximating the
temperature derivatives by finite differences. DTUSE is only
used when individual enthalpy/entropy values are being
calculated (ISANDE = 1, line 12). DTUSE should generally be
<= 1.0 (larger values often cause floating overflows/
underflows).

1/30/113

GIBBS module Page 170

- 6 - NTP, NPSCAL, PRESO, COMP, TAUP

FORMAT (21I5,3F10.5)
Namelist defaults: 0, 0, 1.0, 44.6, 0.4

6.1 NTP Flag for constant pressure dynamics. This option
MUST be set to 1 or 2 when the MD calculation is done with

constant pressure periodic boundary conditions (NTB=2, line 4).

0 Classical dynamics without any Pressure Monitoring

= 1 MD with isotropic position scaling

= 2 MD with anisotropic diagonal (x-,y-,z-) position scaling

6.2 NPSCAL Flag for the type of scaling in case of constant

pressure run.

0 Uniform coordinate Scaling

1 Sub molecules Center of mass Scaling

6.3 PRESO Reference pressure at which the system is maintained

(when NTP > 0) in units of bars, where 1 bar ~ 1 atm.

6.4 COMP Inverse compressibility of the system when NTP > 0.

The unit is in 1.0E-06/bar (a value of 44.6 is recommended).

6.5 TAUP Pressure relaxation time when NTP .gt. 0
The recommended value is between 0.1 and 1.0 pSEC-1

-7 - NDFMIN, NTCM, NSCM, ISTAY, NSTAY, NATRCM, ISVAT

FORMAT (7I5)
Namelist defaults: o0, o0, -1, 0, 0, 0, 1

7.1 NDFMIN Number of degrees of freedom that will be subtracted
from the total number of degrees of freedom to account for
center of mass removal, belly runs, etc. (This will be a value

between 0 and 6).

By default (if NDFMIN.GE.O), this value will be set

automatically.

-- For nearly all simulations, you should accept the
-- default calculated when NDFMIN = 0.

1/30/113

GIBBS module Page 171

If you set NDFMIN<O, then ABS(NDFMIN) additional degrees of
freedom will be subtracted *in addition to* the number
calculated automatically. This option is provided so that you
can account for systems containing extended linear moities
that reduce the true number of degrees of freedom from that
which would be calculated by a simple 3N-6 determination. For
example, if you used a linear triatomic molecule for your
solvent, you would need to set NDFMIN = -(number of solvent

molecules).

7.2 NTCM Flag for the removal of translational and rotational
motion from the initial velocities.
NOTE: this flag is automatically set to 0 if belly option is

used.

= 0 The translational and rotational motion about the
center of mass is not removed

= 1 The above motion is removed and NTCM is reset to 0.

If velocities are being periodically reassigned according
to a Boltzmann distribution (NTT < 0) and NTCM = 1, then

center of mass motion will be removed after each reassignment.

7.3 NSCM After NSCM steps the above motion will be removed
again if NTB .EQ. 0. This flag should be set to -1
if the belly option is used. This results in NSCM .EQ.
90 000 000 steps.

7.4 ISTAY Read, but not used.
7.5 NSTAY Read, but not used.
7.6 NATRCM Read, but not used.
7.7 ISVAT Residue-based periodic imaging flag

=1 Residue-based periodic boundary conditions are used.
For each residue, imaging is determined based on the
position of the atom in the residue which is closest
to the residue’s initial center of mass. Both solute
and solvent atoms are imaged on a residue basis. Each
atom of any solute or solvent residue "sees" the same

image of any interacting residue. This is the default.

=2 Same as 1, except that for each atom of the _solute_,
different whole-residue images on interacting residues
may be used. Can be useful when a solute residue is

fairly long in one or more dimensions.

1/30/113

GIBBS module Page 172

The code required to implement ISVAT=2 does not vectorize,
and may result in a substantial hit to performance on
vector machines. For this reason, ISVAT=1 should be used

except where ISVAT=2 is clearly required.

=3 No residue-based periodic imaging. Separate imaging is
done for each atom-atom pair. This is the way imaging
was done in versions = 3 of GIBBS (and MD). In
typical operation, you would NOT want to use this
option.

Setting ISVAT<3 allows a cutoff of as large as ~ 1/2 the
smallest box dimension to be used. When ISVAT=3 with periodic
boundary conditions, a much smaller cutoff/box ratio must be

used.

ISVAT is ignored when periodic boundary conditions are not
used.

- 8 - NSTLIM, INIT, NTU, T, DT, VLIMIT, IVEMAX

FORMAT(3I5,3F10.5,1I5)
Namelist defaults: 1, 3, 1, 0.0, 0.001, 0.0, O

8.1 NSTLIM

> 0 Number of MD-steps per run to be performed.
NRUN (line 5) such runs will be carried out.

= -1 Continue simulation until done, or until TIMLIN (line 2)
is exceeded. This option is often used with dynamically
modified procedures (since we don’t know at the outset
how many total steps will be required).

8.2 INIT Flag for different starting procedures.
If option NTX is less than 5, INIT should be equal to 3.

If option NTX is greater than or equal to 5, this option
should be equal to 4.

3 V(T-DT/2) is obtained by calculating force(T)
4 Input V(T-DT/2) is used for the starting velocity

8.3 NTU Read but ignored.

8.4 T The time at the start (psec). Only for your own use.
Not important for the simulation.

1/30/113

GIBBS module Page 173

8.5 DT The time step (psec).

(Note that in the special case where window growth is
requested by using the unrecommended flag combination
(IFTIME = 0 and ISLDYN = 0; line 14), DT is replaced by
the value of DTA on line 15).

8.6 VLIMIT Limiting velocity

If .ne. 0.0, then any component of the velocity that is
greater than abs(VLIMIT) will be reduced to VLIMIT
(preserving the sign), and a warning message will be
printed. This can be used to avoid occasional

instabilities in molecular dynamics runs. VLIMIT should
generally be set (if at all) to a value like 20., which is well
above the most probable velocity in a Maxwell-Boltzmann
distribution at room temperature. Note that although it

is anticipated that use of a liberal (large) value of vlimit
should not adversely affect the statistics accumulated
during a free energy simulation, this has not yet been

definitively demonstrated.
8.7 IVEMAX Maximum times VLIMIT may be exceeded.

If IVEMAX >0, then IVEMAX specifies the number of times the
limiting velocity VLIMIT can be exceeded in a simulation. If
VLIMIT is exceeded >= IVEMAX times, the simulation will stop.
If IVEMAX =0, there is no limit on the number of times VLIMIT

can be exceeded.

-9 - NTC, NTCC, NCONP, TOL, TOLR2, NCORC, ISHKFL,
ITIMTH, JFASTW

FORMAT(3I5,2F10.5,415)
Namelist defaults: 1, 0, 0, 0.0005, 0.0001, o0, 1,
0, O

9.1 NTC Flag for SHAKE to perform bond length constraints.
Constraining the bond lengths removes the highest frequency
motions from the system and usually allows somewhat

larger timesteps to be used.

1 SHAKE is not performed

= 2 Dbonds involving hydrogen are constrained. No bonds which
are part of the pert group are constrained.

= 3 all bonds are constrained

1/30/113

GIBBS module Page 174

9.2 NTCC (Not used)
9.3 NCONP (Not used)
9.4 TOL Relative geometrical tolerance for bond constraints

in SHAKE. Smaller values give tighter tolerances. The

recommended value is <= 0.0005 Angstrom

9.5 TOLR2 Relative geometrical tolerance for angle and torsion
constraints (radians). Smaller values give tighter tolerances.

The recommended value is <= 0.0001 rad.

9.6 NCORC Constraint energy flag.

= 0 No constraint contributions to the free energy are

calculated.

= 1 The contributions to the free energy from any constraint
whose equilibrium value changes with lambda will be
calculated. This includes: A) Any constrained internals
defined at the end of the input (see flag INTR, line 13);
and B) any SHAKE-en bonds (see NTC).

If NCORC=1 is specified, the program will determine which
atoms of the system have positions which are dependent on
the constraints, and all of these will effectively be
included in the "perturbed group". This forces some time-
consuming calculations. If no constraints are changing with
lambda, be sure to set NCORC=0.

The procedure used to perform a PMF makes it difficult to
separate contributions due to the constraints themselves from
those due to non-bonded/electrostatic interactions. For this
reason, in these cases CORC will reflect the sum total of all
three types of contributions and the individual non-bonded/
electrostatic contributions will be reported as 0’s.

Note: If you are using a "belly" with NCORC=1, you must
ensure that all residues of the pert group are part of the
moving belly, and that, additionally, any residues sharing
constrained bonds with the pert group (if any) are part of
the moving belly.

9.7 ISHKFL Flag which determines what the program will do in the
event of a SHAKE/internal constraint failure.

= 0 Program halts immediately. This is what the old versions
of Amber did.

1/30/113

GIBBS module
>
9.8 IT
9.9 JF

Page 175

1 Program will write a restart file containing the
coordinates before the failed call to the constraint
routine (+ velocities, if applicable). The program will
then halt.

1 The coordinates will not be constrained on any iteration
for which the constraint routine fails. If constraint
failure occurs on more than ISHKFL-1 contiguous steps, the

program will stop as described for ISHKFL=1.

IMTH Defines which method should be used to calculate
constraint free energy contributions when NCORC=1 and the
Thermodynamic Integration method (IDIFRG=1) approach is
being used.

0 Use the Potential Forces (PF) method.
1 Use the Constraint Forces (CF) method.

-1 Use the PF method, override program warnings about

constraints within closed rings.

Two methods for determining the constraint free energy
contributions during TI have been derived in the literature.
The PF method appears to be more efficient, and so is the
default. However, PF method cannot be used when any
constraints of the system which are changing with lambda
(and hence contribute to the free energy) are part of a
closed ring. In this case, the CF method must be used.

The program will flag any constraints of the perturbed
group which are part of a closed ring, and will stop with
a warning if TI is used with PF in such a case. If none
of these constrained bonds change with lambda, you can
still use the PF method, but must specify ITIMTH=-1 here
to ensure you have considered whether this will be
appropriate. It is suggested you NOT set ITIMTH=-1
automatically, but only after ensuring that it will be
appropriate.

ASTW Fast water definition flag. By default, the system

is searched for TIP3P waters, and special fast routines are
used for these molecules. There are two types of fast routines
specific to TIP3P water: 1) A faster, analytic SHAKE algorithm
for 3-point water; 2) A faster routine to calculate non-bonded
TIP3P-TIP3P water interactions.

In normal operation, the program defaults will be acceptable.

However, in rare instances (e.g. for debugging purposes, or

1/30/113

GIBBS module Page 176

when the user has redefined the definition of a TIP3P water),
one may wish to inhibit the use of these fast routines and/or
redefine the default definition used in Amber to define TIP3P

waters. This option makes this possible.

= 0 Normal operation. The default AMBER definition of TIP3P
water is used, and the fast water routines are used where

appropriate.

= 1 Use the fast routines for water SHAKE and non-bonds, but
redefine the names the program uses to recognize TIP3P
waters. The redefinition names are provided below
(line 17).

= 2 Use the fast water routine for SHAKE. Do not use the fast

water routine for non-bonds.

= 3 Use the fast water routine for SHAKE. Do not use the fast
water routine for non-bonds. Redefine the names the program
uses to recognize TIP3P waters. The redefinition names are

provided below (line 17).

= 4 Do not use fast water routines for either SHAKE or

non-bonds.

- 10 - NTF, NTID, NTN, NTNB, NSNB, IDIEL, INBPER, IELPER,
IMGSLT, IDSX0, ITRSLU, IOLEPS, INTPRT, ITIP

FORMAT (141I5)
Namelist defaults:
i, o 3, 1, 50, O o0 O O O 1, O, O, O

10.1 NTF Flag for force evaluation. Typically set to the same
value as NTC (line 9).

= 1 complete interaction is calculated

= 2 bond interactions involving H-atoms omitted, except bonds
in the perturbed group (use with NTC = 2, see above SHAKE
options)

all the bond interactions are omitted (use with NTC = 3)
angle involving H-atoms and all bonds are omitted

all bond and angle interactions are omitted

o U W

dihedrals involving H-atoms and all bonds and all angle

interactions are omitted

]
~

all bond, angle and dihedral interactions are omitted
= 8 all bond, angle, dihedral and non-bonded interactions
are omitted

1/30/113

GIBBS module Page 177

10.2 NTID Flag for solvent pairlist behavior.

= 0 only the first atom of each solvent molecule is used
when generating the non-bonded pairlist for a periodic
system (for water, this is the oxygen). If this atom
lies within the specified cutoff, the entire solvent
molecule is included in the non-bonded pairlist. This
can result in a substantial speedup in non-bonded
pairlist generation, and is recommended when using water

as the solvent.

=86 all atoms in a solvent molecule are considered when
generating the non-bonded pairlist for a periodic system.
If any atom of the solvent molecule lies within the
specified cutoff, all atoms of the solvent molecule will
be included in the non-bonded list. This is the behavior
of versions of AMBER <= 3.0.

A value of NTID=0 is suggested for calculations using water as
a solvent. For calculations using larger solvent molecules,
one should carefully consider whether using only the first

atom is appropriate.

Regardless of the value of NTID, all atoms of the *solutex*
are considered when deciding whether to include a second
residue in the interacting non-bonded list for the solute

residue.
NTID will have no affect for non-periodic systems.

10.3 NTN Read, but not used.
(This was formerly the flag for generating the non-bonded
pairlist. Now non-bonded interactions are always calculated
based on a residue basis and stored as atom pairs. If any pair
of atoms from different residues are within the cutoff, all

atoms pairs across the two residues are included.)
10.4 NTNB Flag for non-bonded pair list generation.
= 0 no pair list will be generated (unlikely you would choose

this).
= 1 pair list will be generated

10.5 NSNB After NSNB steps the non-bonded pair list will be
updated.
10.6 IDIEL Type of dielectric function to be used.

= 0 distance dependent dielectric function (for in wvacuo

1/30/113

GIBBS module Page 178

simulations of "aqueous" systems).
= 1 constant dielectric function (always use with explicit

solvent, e.g. water)
10.7 INBPER Read but ignored.

10.8 IELPER Flag to control the "electrostatic decoupling" of the
perturbation energy

0 Regular run; no electrostatic decoupling.

1 Only the electrostatic contribution to the free energy
is calculated keeping the geometry and the VDW parameters
pertaining to LAMBDA = 1.

Il
1
=

Only the non-electrostatic (VDW, etc.) contributions to
the free energy are calculated and the system changes
from that characteristic of LAMBDA = 1 to 0 (or from that
characteristic of LAMBDA = 0 to LAMBDA = 1 depending on
the signs of IFTIME or ALMDEL).

In electrostatic decoupling, two runs have to be performed,
one for electrostatic and the other for VDW etc. contributions.
This is useful when a polar or charged group is being
established or removed. However, the LAMBDA = 1 state

must pertain to the established group (the residue

generated by PREP) and the LAMBDA = 0 to the removal of

the group (as designated in the PARM input).

The decoupling MUST go through the following perturbation
cycle: electrostatic LAMBDA = 1 -> 0 with LAMBDA(vdw) = 1,
followed by van der Waals LAMBDA = 1 -> 0. If the simulation
is started at LAMBDA = 0, then reverse the above procedure.
In this way, charges never appear on atoms which do not
possess a vdw radius which avoids very close contacts due

to charge-charge attractions.

Notes:
1) Two separate runs are needed to fully carry out
the decoupling calculation.

2) In the IELPER=+1 phase, any added
restraints/constraints (if INTR > 0) will be fixed at
the values they have when lambda=1. (They will still only
be applied, however, over the ranges specified).

3) The free energy contribution from internal constraints

is never calculated during the IELPER=+1 phase
(it is calculated during the IELPER=-1 phase).

1/30/113

GIBBS module Page 179

To summarize:

IELPER internals/vdw electrostatics
+1 fixed @ lambda=1 vary

(non-pert) values

-1 vary fixed @ lambda=0
(pert) values

10.9 IMGSLT Flag to control the Solute-Solvent interaction

in the case of PB simulation

0 The Boundary condition is applied to solute-solvent

interactions

= 1 No Solute-Solvent imaging. Solute does not see image
solvent. This assumes that the solute is centered in
the periodic system, and is not free to migrate. Do
not use this with mobile solutes. This option is mainly

useful for large solutes.

10.10 1IDSXO Flag which controls how the mixed van der Waals
parameters are calculated for atom pairs where one atom

vanishes (at either lambda=1 or lambda=0). (See Ref. 6).

0 r*(state where one atom vanishes) = r*(non-vanishing atom)
(This is the way AMBER has done this in the past)

> 0 r*(lambda) will be calculated so that

r*(state where one atom vanishes) = IDSX0/1000
r*(state where both atoms exist) = r*(A) + r*(B)
= -1: results in r*(state where one atom vanished) = 0.0
10.11 ITRSLU During a periodic boundary conditions simulation,

controls whether SOLUTE molecules which exit the primary
image box will be translated back into the central box.
SOLVENT molecules which exit the central image box are always
translated back into the box. A molecule is considered to
have floated out of the central box if the first atom of the
molecule exits the box.

= 1 Both SOLUTE and SOLVENT molecules which exit the primary
image box will be translated back into the box. The system
will be translated every 500 steps so that the center of
geometry of the solute is centered in the primary image
box. (Recommended for most systems).

1/30/113

GIBBS module Page 180

= 2 Same as 1, except that the system as a whole is not
periodically translated to keep the solute centered in

the primary image box.

= 0 Only SOLVENT molecules will be translated back into the

primary image box. SOLUTE molecules are not translated.

10.12 IOLEPS Controls how parameter mixing is performed for

non-bonded interactions.

= 0 Mixing of epsilon (well-depth) van der Waals parameters

done as
e(A) = A*e(mixed, 2 =1) + (1 = A)* e(mixed, A = 0)
Mixing of electrostatic interactions done as

Q1qx(2) = A*qq(A =1+ (1-1)* qqx(A =0)

= 1 Mixing of epsilon done as

e(4) =+/(ei(A)e (1)

Mixing of electrostatics done as

q192(4) = q1(A)q2(4)

Setting IOLEPS=1 forces mixing to be done as in older
versions (e.g. 3.0, 3A) of AMBER. The "new" mixing scheme
(IOLEPS=0) has several advantages, including A) a finite
derivative for van der Waals interactions involving an atom
which "disappears" at one end point; and B) Interaction
between pairs of atoms where one/both atoms "disappear" at
both end points never contribute to the energy. [One side-
benefit of this is that it allows duplicate topologies;
thus one can perform perturbations using the "CHARMM"
methodology, if desired].

Note that if IDIFRG = 1 (thermodynamic integration),
the epsilon parameters are always mixed as described for
IOLEPS = 0.
10.13 INTPRT Determines which energies contribute to the calculation
of the free energy change.
= 0 No intra-perturbed group energies are accumulated

(Same as pre-4.0 versions of AMBER)

= 1 intra-pert. group non-bond energies accumulated as
well (but no 1-4’'s).

1/30/113

GIBBS module Page 181

= 2 intra-pert. group non-bond energies accumulated

(including 1-4's).

= 3 intra-pert group internal energies accumulated

(bonds, angles, torsions)
= 4 intra-pert group non-bond and internal energies accumulated
= 5 intra-pert group non-bond, 1-4, and internal

Note: If any PMF contributions are being calculated
(NCORC = 1, line 9), all intra-perturbed group non-bonded
contributions will be calculated if INTPRT = 1,2,4 or 5
(when NCORC=1, 1-4's are not broken out separately).

10.14 ITIP By default (ITIP=0), GIBBS assumes that if you are
running a periodic boundary conditions (PBC) simulation with
solvent, the solvent is TIPNP water. A special characteristic
of this solvent model is that there are no h-bond (10-12)
interactions between any pair of solvent molecules. A potential
speedup is thus obtained by skipping all such h-bond

interactions.
If you choose to use a solvent model where there should be
h-bond (10-12) interactions calculated between pairs of solvent

molecules, set ITIP to any value other than 0.

Note that in either case, all 10-12 interactions between
solvent and solute molecules will still be determined normally.

- 11 - CUT, SCNB, SCEE, DIELC, CUT2ND, CUTPRT

FORMAT(6F10.5)
Namelist defaults: 8.0, 2.0, none, 1.0, 0.0, 00

11.1 CUT The primary cutoff distance for the non-bonded pairs.

11.2 SCNB The scale factor for 1-4 vdw interactions
if (SCNB .EQ. 0.0) then SCNB = 2.0

11.3 SCEE The scale factor for 1-4 electrostatic interactions
There is no namelist default, since the 1991 and previous

force fields used 2.0, while the 1994 force field uses 1.2.

11.4 DIELC Dielectric constant for the electrostatic interactions
if (DIELC .LE. 0.0) then DIELC = 1.0

1/30/113

GIBBS module Page 182

11.5 CUT2ND An (optional) secondary cutoff. If CUT2ND > 0.0, then
at every nonbonded update (every NSNB steps), the energies and
forces due to interactions in the range CUT< Rij <= CUT2ND will
be determined. These energies and forces will be added to the
non-bonded interactions within CUT distance at every timestep.

The idea is that long-range interactions change more slowly
than short range interactions, and thus this dual cutoff method
allows one to include longer-range information at only a

moderate additional cost.

11.6 CUTPRT An (optional) alternative cutoff to be used for
interactions with the perturbed group. If CUTPRT and CUT2ND
are both defined, interactions in the range

CUTPRT < Rij <= CUT2ND

will constitute the secondary cutoff range for interactions

with the perturbed group.

- 12 - NTPR, NTWX, NTWV, NTWE, NTWXM, NTWVM, NTWEM, NTPP, IOUTFM,
ISANDE, IPERAT, IATCMP, NTATDP, ICMPDR, NCMPDR, NTWPRT

FORMAT (16I5)
Namelist defaults:
100, -1, -1, -1,
999999, 999999, 999999, 0, 0, O

12.1 NTPR Flag for printing energy related quantities. for
every NTPR steps these quantities will be output.

12.2 NTWX Flag for packing the coordinates. For every NTWX
steps the coordinates will be dumped through file ‘PCOORD’ in
format (10F8.3). If NTWX=-1, no dumping will be performed.

12.3 NTWV For every NTWV steps the velocities will be
written in file 'PVEL’ in format (8F8.4). If NTWv=-1,

no dumping will be performed.

12.4 NTWE Every NTWE steps energy info is written in file ’'PEN’
in formatted form. If NTWE=-1, no dumping will be performed.

12.5 NTWXM After NTWXM steps the NTWX switch will be inactive.
WARNING: set the following three flags to 0 if long run ...

this results in NTWXM= 999 999

12.6 NTWVM After NTWVM steps the NTWV switch will be inactive.

1/30/113

GIBBS module Page 183

12.7 NTWEM After NTWEM steps the NTWE switch will be inactive.
12.8 NTPP (not used).
12.9 IOUTFM Flag for format of velocity and coordinate sets

0 Formatted

= 1 Binary

12.10 ISANDE Flag to output enthalpies and entropies, as well as
free energies. Note that these quantities are typically an
order of magnitude or more less precise than free energy
values, and will be much more sensitive than free energies
to the completeness of the ensemble statistics collected. See
the discussion following the input description for more

information.

Setting ISANDE = 1 will also force the printing of the
integrand quantity <dV/dA>

when Thermodynamic Integration is being performed (see the
IDIFRG flag, 14.6). This can be useful if the user wishes to

apply an alternative integration algorithm.

12.11 IPERAT Request that free energy components or derivatives
be calculated. Note that free energy components can be
determined during any standard free energy simulation. Free
energy derivatives can only be calculated in a special

simulation where lambda does not change.

0 No free energy components or derivatives will be calculated.

= 1 Report free energy components. Components will be
be reported in file PATNRG on a per-atom basis.

= 2 Report free energy components. Components will be
be reported in file PATNRG on a per-residue basis.

= 3 Report free energy components. Components will be
be reported in file PATNRG on a per-molecule basis.

= 4 Calculate/report free energy components or derivatives
(depending on the flag ICMPDR). Values will be reported
in file PATNRG for the atoms/groups defined at the end
of input using GROUP input.

For free energy components, free energies will be logged

as defined by the GROUP definition, subject to the condition
that only those atoms which are part of the perturbed group
or which move with an added CONstraint will ultimately

1/30/113

GIBBS module
12.12 1IA
12.13 NT
12.14 1IC

Page 184

be included. All atoms not explicitly included in a group
will be put in a final single group.

For free energy derivatives, derivatives will be logged
only for those atoms included in a group definition. Any
atom of the system may be designated as part of any group
(but each atom will be a member of at most one group).
Typically, you will place individual atoms in their own

groups when calculating derivatives.

TCMP If free energy components are being reported, by
default only the total free energy per atom/residue/molecule/
group is reported. By setting IATCMP > 0, one can force the
components to be broken down into electrostatic, non-bonded
and internal contributions. IATCMP has no affect when free
energy derivatives are being calculated.

0 Do not break free energy components into contributions.
1 break free energy componenets into contributions.

ATDP Free energy components/derivatives will only be
reported every NTATDP steps. Note that if free energy
components are being logged, a free energy report will occur
at a particular multiple of NTATDP steps only if the free
energy accumulators have been updated since the last report.
For free energy derivatives, energies will be reported every
NTATDP steps in all cases.

-1 NTATDP set to NTPR
MPDR
0 no free energy derivatives.

1 If IPERAT=4, log the free energy derivatives with respect
to charge and the non-bonded parameters epsilon and r*. If
the contributions of constraints to the free energy are
being calculated (NCORC = 1), then derivatives with respect
to constraints in the perturbed group (and added
constraints) will also be calculated.

Free energy derivatives can only be calculated for
lambda = 0 or lambda = 1.

It is sufficient to define a "null" perturbed group in PARM

if you simply wish to determine the non-bonded free energy
derivatives of specified atoms.

1/30/113

GIBBS module Page 185

12.15 NCMPDR IF free energy derivatives are being calculated
(IPERAT=4 and ICMPDR=1), NCMPDR gives the number of steps of
effective "equilibration." After the first NCMPDR steps, the
accumulators for the free energy derivatives are cleared and
reset. Free energy derivatives reported from this point
forward will only reflect averaging since the accumulators

were cleared.

Some people prefer to use a post-processing program to

analyze free energy derivatives. Such programs can usually
"remove" a given initial portion of the free energy derivative
information from subsequent totals. In such a case, you

may wish to set NCMPDR=0 here (no "equilibration" phase),

and pick the amount of data to discard in the post-processing

program.

12.16 NTWPRT Coordinate/velocity archive limit flag. This flag can
be used to decrease the size of the coordinate / velocity
archive files, by only including that portion of the system of
greatest interest. (E.g. one can print only the solute and not

the solvent, if so desired).

= 0 Coord/velocity archives will include all atoms of the
system.
Coord/velocity archives will include only the solute atoms.
Coord/velocity archives will include only atoms 1->NTWPRT.

- 13 - NTR, NRC, NTRX, TAUR, INTR, IBIGM, IDUM, NMRMAX,
IWTMAX, ISFTRP, RWELL

FORMAT(3I5,F10.5,6I5,F10.5)
Namelist defaults:
o, o, 1, 1.0, O 1, o0, O, O, O, 5.0

13.1 NTR Flag for restraining specified atoms.

0 Classical MD
1 MD with restraint of specified atoms

13.2 NRC The number of atoms whose positions to be restrained.
(now calculated from group input - cards 17 to end)

13.3 NTRX Flag for reading the cartesian coordinates for
restraint from unit PREFC.
Note: the program expects coordinates for all atoms from which
a subset is selected by the GROUP input which follows.

1/30/113

GIBBS module Page 186

= 0 binary form

= 1 formatted form
13.4 TAUR The relaxation time for restraint.
13.5 INTR

= 0 No additional internal restraints or constraints will be

read.

> 0 Additional internal restraints/constraints will be read
following the normal input. Storage will be allocated for a

maximum of INTR added restraints/constraints.

These restraints/constraints can be used for e.g. a PMF

calculation.
13.6 IBIGM

To calculate the free energy contributions of a constraint (if
NCORC=1, line 9), the free energy at lambda*d lambda is

evaluated by shifting the value of the constraint to its value
at lambdaxd_lambda. This change in the value of the constraint
can be effected either by performing half of the shift at each
end/side of the internal, or by performing the entire shift at

one end.
= 0 Half of the shift is performed at each end of the internal.

= 1 The entire shift occurs at the end/side of the internal

which results in fewer atoms being moved.

The number of atoms whose positions change with shifting the
constraint affects how quickly the calculation can be
performed. Setting IBIGM = 1 can significantly speed up some
calculations (e.g. when rotating a ring about a constrained
torsion which joins it to a protein), and IBIGM should

typically be set to 1 for invacuo simulations.

In all cases, GIBBS determines which interatomic nonbonded
distances depend on constraint values, and only these are
recalculated when NCORC=1.

13.7 IDUM Read, but not used.
13.8 IDUM Read, but not used.
13.9 IDUM Read, but not used.

1/30/113

GIBBS module

Page 187

13.10 ISFTRP Causes the 6-12/10-12 functions used for non-bonded

interactions to be replaced by "soft repulsion" terms of the
form

RWELL * (r* - r**)?

where r* is the optimal interaction distance between a pair

of atoms, calculated from their respective van der Waals radii.
This function is sometimes useful in structure refinement,

but should *not* typically be used in free energy calculations.
Atoms in the perturbed group are always treated by normal

(6-12 or 10-12) non-bonded forces, regardless of the value of
ISFTRP.

0 regular 6-12/10-12's. No soft repulsion.

1 replace 6-12's by soft repulsion.

= 2 replace 10-12’'s by soft repulsion, as well.

13.11 RWELL Force constant (in kcal/mol) used for soft repulsion
interactions.
- 14 - IFTIME, CTIMT, ALMDA, ALMDEL, ISLDYN, IDIFRG, NSTMEQ,

14.1 I

NSTMUL, NDMPMC, IDUM, IDWIDE, IBNDLM

FORMAT (I5,3F10.5,8I5)
Namelist defaults:
o, 0.0, 1.0, 0., -3, o0, 2, 2, 0, O0,0, O

FTIME Mutation flag.

If ISLDYN=0, then if IFTIME = 0 a standard Window Free Energy
Perturbation will be carried out. The perturbation will start
at lambda = ALMDA, and proceed in equally spaced intervals of
delta(lambda) = ALMDEL until 1 (ALMDEL > 0) or 0 (ALMDEL < 0)
is reached. At each value of lambda, NSTPE steps of
equilibration and NSTPA steps of data collection (see line 15)
will be performed, and energy evaluated using Equation 2.

=+1 A "Slow Growth" perturbation will be carried out.
The simulation will start at lambda = ALMDA, and will be
run in either the 0->1 direction (IFTIME = +1) or 1->0
direction (IFTIME = -1). CTIMT gives the number of psec of
dynamics which would be used to perform the complete change
0->1 (or 1->0). The actual length of the simulation will
depend on the starting value ALMDA.

NOTE IFTIME is included for backwards compatibility with

1/30/113

GIBBS module

14.2

14.3

14.4

Page 188
input files created for previous versions (< 4) of AMBER.
However, it is strongly recommended that you use the ISLDYN
flag to specify the type of simulation desired.
If ISLDYN.NE.O, IFTIME is ignored.
CTIMT The total length of the MD simulation (in psec) to be

carried out in performing a slow growth simulation which

transforms state lambda = 0 into lambda = 1 (or vice-versa).

Note that this variable does not control the number of steps
which will actually be run. For example, if CTIMT = 1l0Opsec,
ALMDA = 0.0, ISLDYN = +1, and NRUN*NSTLIM*DT = 5psec, only half
of the desired simulation would be carried out. The remainder

would have to be carried out by a restart.

CTIMT is only used when ISLDYN = =1 or
(IFTIME=+1 and ISLDYN = 0).

ALMDA The starting value of lambda for this simulation. The

value can be on the inclusive interval 0.0-> 1.0.

ALMDA = 1 corresponds to the "initial" state defined by the
structure described in PREP. ALMDA = 0 corresponds to the
"final" state defined by the structure described in PARM.

Intermediate "states" are defined by a linear combination
of the parameters representative of (lambda = 0) and
(lambda = 1).

For restart simulations (IREST=1, line 2), ALMDA is read
directly from the restart file, and the value specified here

is ignored.

ALMDEL For _Standard_(fixed width) Window and TI

simulations, ABS(ALMDEL) gives the width of each window or

integration interval.

If double-wide sampling is used with Window Growth (default),
at each value of lambda, the free energies to both +ALMDEL
and -ALMDEL are evaluated. This results in "double wide
sampling" (see the introductory text).

If (IFTIME=0 and ISLDYN=0), the sign of ALMDEL determines the

direction of the change. If ISLDYN=+3, the sign of ISLDYN
determines the direction of the change.

1/30/113

GIBBS module Page 189

ALMDEL should be chosen so that the free energy change over
any interval is not too large. It has been suggested (somewhat
arbitrarily) that as a rule the free energy change/window
should not exceed 2RT.

ALMDEL is only used when ISLDYN = +3 or
(IFTIME=0 and ISLDYN = 0)

14.5 ISLDYN Free Energy Method flag.
It is recommended that you use this flag exclusively, and
ignore IFTIME.

= +1 Perform a Slow Growth simulation. The simulation will
be started at ALMDA, and CTIMT psec will be required to
complete the conversion to the end (0 or 1). If ISLDYN = +1,
the simulation will be carried out in the direction 0-> 1.
If ISLDYN = -1, the simulation will be carried out in the

direction 1-> 0.

= #2 Perform a Dynamically Modified Window simulation. The
simulation will be started at ALMDA and progress either in
the direction 0-> 1 (if ISLDYN = +2) or 1-> 0
(if ISLDYN = -2). The numbers of equilibration and data
collection steps performed at each window are given by
NSTMEQ and NSTMUL (on this line).

If IDIFRG = 0, the energy will be evaluated at each
interval using Equation 2 (FEP). If IDIFRG = 1,
thermodynamic integration will be carried out using

Equation (4).

= 3 Perform a "standard" Window Growth simulation (with
fixed width lambda intervals). The perturbation will start
at lambda = ALMDA, and proceed in equally spaced intervals
of delta(lambda) = abs(ALMDEL) until 1 (ISLDYN > 0) or 0
(ISLDYN < 0) is reached. At each value of lambda, NSTMEQ
steps of equilibration and NSTMUL steps of data collection
(see this line) will be performed.

If IDIFRG = 0, the energy will be evaluated at each
interval using Equation 2 (FEP). If IDIFRG = 1,
thermodynamic integration will be carried out, using
Equation (4).

14.6 IDIFRG Thermodynamic integration flag.

= 0 No thermodynamic integration.

1/30/113

GIBBS module

14.7 NS

14.8 NS

Page 190

1 If windows or dynamically modified windows have been
specified, the energy will be calculated using thermodynamic
integration (TI) (Equation 4). The integrand will be
evaluated at the endpoints of each "window", and the
integral will be approximated using the trapezoidal rule
(see the discussion following the input description).

In addition to the integrated free energy, if ISANDE is set
= 1 (see flag 12.10), the value of <dV/iA>

will be output at every energy update, so a different
integration algorithm can be applied by the user, if desired.

If slow growth has been requested, setting IDIFRG=1 has the
effect of performing the slow growth summation using the
non-averaging equivalent of the TI equation (4), rather than
the FEP equation (2).

TMEQ # of steps of equilibration to be used for each window
if ISLDYN = %2 or +-3.

(Note that if windows are instead requested using the flag
combination IFTIME = 0 and ISLDYN = 0, NSTPE [line 15] is
used) .

TMUL # of steps of data collection to be used for each
window if ISLDYN = %2 or +-3.

(Note that if windows are instead requested using the flag
combination IFTIME = 0 and ISLDYN = 0, NSTPA [line 14] is
used) .

14.9 NDMPMC Every NDMPMC windows, statistics will be dumped to the

14.10 1ID

statistics file (MICSTAT). The statistics file contains a
condensed format record of the free energy for each window

interval.

The MICSTAT file is not written with slow growth, or if NDMPMC

is set < 0.

By default NDMPMC=100. NDMPMC cannot exceed 100.

UM Not currently used.

14.11 IDWIDE Allows double-wide sampling to be turned off with FEP.

0 Double-wide sampling performed when FEP windows are being
calculated.

1 Double-wide sampling turned off when FEP windows are being

1/30/113

GIBBS module Page 191

calculated.

Double wide sampling means at each value we calculate the free
energy in both the "forward" and "reverse" direction. This
gives an intra-run consistency check (lower bound on the
error), but requires we calculate every interval twice. The
simulation can be run in roughly half the time, without the

forward/reverse consistency check, by setting IDWIDE=1.

The nature of thermodynamic integration (IDIFRG=1) is such that
double wide sampling is never carried out. IDWIDE has no effect

for such calculations.

14.12 1IBNDLM By default (IBNDLM), lambda+d lambda is
constrained to the range 0<lambda+d_ lambda<l.

If IBNDLM=1, then lambda:d lambda can exceed the range 0->1.
Useful when doing PMF-type calculations.

Ignored for regular slow growth.

NOTE: The following three cards are only read if ISLDYN = =2.
Dynamically Modified Windows options (only if ISLDYN = +2):
- l4a - IAVSLP, IAVSLM, ISLP, CORRSL, AMXMOV

FORMAT (3I5,2F12.7)
Namelist defaults: 8, 2, 0, 0.8, 0.1

l4a.1 IAVSLP The current dG/dLAMBDA slope will be approximated by a
linear fit to the Accumulated G vs. LAMBDA data for the
previous IAVSLP windows. Maximum value = 1000.

l4a.2 IAVSLM Until IAVSLM windows have been collected, the window
spacings will be fixed at ALMDLO (line 1l4c). When IAVSLM
windows have been collected, the slope will be calculated
over all available windows, until IAVSLP windows are available.

i.e. # windows < IAVSLM : dLAMBDA = ALMDLO
IAVSLM <= # windows < IAVSLP :
dLAMBDA calculated from slope over # windows
windows >= IAVSLP
dLAMBDA calculated from slope over previous IAVSLP

windows

If IAVSLM=-1, window widths will be fixed at ALMDLO until

1/30/113

GIBBS module Page 192

IAVSLP windows are available.

l4a.3 ISLP Determines the direction in which the slope is
calculated.

= 0 (default) use the appropriate value of ISLP (-1 or 1) to
calculate the slope from energies calculated in the same
direction as the simulation (recommended).

= 1 the slope is calculated from the forward (0->1) energy
at each step.

1]
1
-

the slope is calculated from the reverse (1->0) energy
at each step.
= 2 the slope is calculated using the average of the redundant
free energy values (from double wide sampling) over the
interval in the direction opposite to the simulation, i.e.
G(reverse[curr window] - G(forware[prev window])/2 or
G(forward[curr window] - G(reverse[prev window])/2
for simulations run 0->1 and 1->0, respectively.
This option can be useful when very few points are used
to evaluate each slope (e.g. IAVSLP = 2).
= 3 the slope is calculated using the average of the forward

and reverse energies at each lambda.

For best results in most cases, the slope should be calculated
in the same direction as the simulation. This is the default
behavior (ISLP=0).

With thermodynamic integration, or when double-wide sampling is
defeated, ISLP has no effect.

Only options ISLP=0 or ISLP=3 should typically be used when
AMXRST > 0.

l4a.4 CORRSL If the correlation coefficient for a linear fit to the
previous IAVSLM windows is < CORRSL, the number of windows
over which the slope is calculated will be halved (for this
determination of the slope only), and the slope calculated
again. This process continues until the correlation coefficient
is > CORRSL.

l4a.5 AMXMOV The target free energy change per window. If M is the
slope over the previous IAVSLP windows, the next value of
dLAMBDA is chosen as dLAMBDA = AMXMOV/M

Note that when double wide sampling is defeated (IDWIDE=1)
while using a window FEP technique (IDIFRG=0), the free energy
change at a window is defined as the total ("forward" +
"reverse") energy change. This differs from the definition
when double wide sampling is used, where the free energy change

1/30/113

GIBBS module Page 193

at a window is approximately 1/2 * ("forward" + "reverse").

Thus, AMXMOV should be suitably increased when IDWIDE = 1.

Dynamically Modified Windows options (only if ISLDYN = +2):
- 14b - IAVDEL, IAVDEM, AMXDEL

FORMAT (2I5,F12.7)
Namelist defaults: -1, 2, 1.0

14b.1 IAVDEL Number of windows over which the forward and reverse
energies will be compared. If IAVDEL<0, no comparisons will be
carried out. IAVDEL should always be set <0 when thermodynamic
integration is used (IDIFRG = 1). Maximum value = 1000.

14b.2 IAVDEM The relationship between IAVDEL and IAVDEM is
analogous to that between IAVSLP and IAVSLM (see line l4a).

14b.3 AMXDEL If < ABS (DA(for)-DA(rev)) > .GT. ABS(AMXDEL)
then the next dLAMBDA will be scaled as

[< ABS (DA(for) - DA(rev)) > / AMXDEL] **2 * dLAMBDA
If AMXDEL < 0, then scaling occurs in all cases.
Dynamically Modified Windows options (only if ISLDYN = +2):
- l4c - ALMDLO, DLMIN, DLMAX, AMXRST, NORSTS, NTSD, ALMSTP(1)
FORMAT (4F14.9, 2I5, F14.9)
Namelist defaults:
0.0001, 1.0D-6, 0.1, 0.5, O, 0, -1.0
l4c.1 ALMDLO Until enough intervals have been calculated to allow
determination of dG/d_lambda and d_lambda consistent with

IAVSLP and IAVSLM (see line 14a), an interval width of ALMDLO
will be used.

1l4c.2 DLMIN The minimum allowable window width.
l4c.3 DLMAX The maximum allowable window width
l4c.4 AMXRST If the free energy change, dG, over any window is

greater than AMXRST, then the data collection phase for that

1/30/113

GIBBS module Page 194

window will be re-performed using a reduced value of
dLAMBDA. The new value of dLAMBDA is determined as
dLAMBDA (new) = (dLAMBDA(old)/dG) * AMXMOV
AMXRST should not be set too close to AMXMOV, or too many
windows will be recalculated (which is inefficient).
By default, AMXRST=5.*ABS(AMXMOV) .

l4c.5 NORSTS If this is a restart run, and NORSTS=1, then the
restart information relating to dynamically modified windows is
not read (cold start for the dynamically modified windows).
NORSTS is ignored if this is not a restart run.
Normally, NORSTS should be set to 0.

l4c.6 NTSD The statistics relating to dynamically modified
windows are written to file POUT every NTSD. If NTSD=0, then
NTSD is set equal to NTPR (line 12), and these statistics
will be output every time the standard energy information is

printed.

l4c.7 ALMSTP(l) Allows the values of AMXMOV, DLMIN, DLMAX, AMXRST,
and NTSD to be different for different ranges in LAMBDA.

the values defined in lines l4a-1l4c will remain in effect
for the whole run.

> 0 and

the values defined in lines 14b-14d will remain in effect
for the range of LAMBDA

ALMDA-> ALMSTP(1) (ALMDA is defined on line 14)
In this case, _additional line(s)_ are read with the values
of the above variables over various ranges of LAMBDA.
Each line has the format

AMXMOV, DLMIN, DLMAX, AMXRST, NTSD, ALMSTP(I)

FORMAT (4F14.9,1I5,F14.9)

These lines are read until ALMSTP(I) > 1 or ALMSTP(I) < 0.
Each set of values applies to the range in LAMBDA

ALMSTP(I-1) -> ALMSTP(I)

1/30/113

GIBBS module Page 195

Note that the for the last line, ALMSTP(I) must be greater
than 1, or less than 0 (not equal to). This is avoid

machine precision problems.

Note also that, at present, "namelist"-format input always
assumes ALMSTP(l) < 0 (i.e. AMXMOV, DLMIN, etc. remain
fixed over the entire run). If you wish to use the
functionality described above for ALMSTP(), you must use
formatted input.

- 15 - NSTPE, NSTPA, DTE, DTA

FORMAT (21I5,2F10.5)
Namelist defaults: 2, 2, 0.001, 0.001

Additional input in the case where IFTIME = 0 and ISLDYN = 0
(Window Growth specified using the "old" amber syntax).

In all other cases this information is read but ignored.

15.1 NSTPE The number of steps of Equilibration before collecting
the Free Energy Statistics. For each window the system
is equilibrated for NSTPE steps. (When ISDYN=+2 or =3, NSTMEQ

serves the same purpose).

15.2 NSTPA The number of steps for data collection. The averaging
is performed over this number of steps. (When ISLDYN=+2 or
+3, NSTMUL serves the same purpose).

15.3 DTE Read, but not used.
(Note that in earlier <4 versions of Amber, this variable
could be used to set the time-step for the equilibration phase

of window runs).
15.4 DTA The time-step used for window runs specified by

IFTIME=0 and ISLDYN=0. All other runs use the time-step
specified on line 8.

1/30/113

GIBBS module Page 196

- 16 - IVCAP, NATCAP, FCAP

FORMAT(2I5,F10.5)
Namelist defaults: 0, 0, 0.0

16.1 IVCAP Flag to control Cap Option
The Cap option is to solvate a spherical portion of a
solute and to hold the solvent from evaporating through
a half-harmonic potential.

= 0 Cap will be in effect if it is passed from the
the parm module

= 1 Cap will be activated except that the Cap atom
pointer would be modified

= 2 Cap will be inactivated

16.2 NATCAP The Cap atom pointer
It is the last Non-Cap atom number. If IVCAP.EQ.1l
then the pointer passed from the PARM Module will be

overwritten by this number.
16.3 FCAP The Force Constants for the Cap Atoms
-- This card is read only if JFASTW (9.9) = 2 or 3 --
- 17 - 1)WATNAM 2)OWTNM 3)HWTNM1 4)HWTNM2

FORMAT (4A4)
Namelist defaults: "WAT ", "O ", "€l ", "H2 "

This line allows redefinition of the default residue and atom
names used by the program to determine which residues are TIP3P
waters. Except in unusual circumstances, the default water names
should be acceptable.

17.1 WATNAM The residue name the program expects for TIP3P waters.
17.2 OWTNM The atom name program expects for the TIP3P oxygen.
17.3 HWTNM1 The atom name program expects for the TIP3P 1lst H.
17.4 HWTNM2 The atom name program expects for the TIP3P 2nd H.

1/30/113

GIBBS module

—-— These

Page 197

card is read only if I3BOD (2.7).NE.O0 --

This information must be provided in the formatted form given,

even if namelist format input is used above.

- 18A- 1) N3B,

NION

FORMAT (2I5)

The number

of ions in

== Include N3N

of 3body interactions to be defined, and the number
the system.

cards 18B to define all 3-body interactions ==.

- 18B- 1)AT1(I) 2)AT2(I) 3)ACON1(I) 4)BETA31(I) 5)GAMMA31(I)

6)ACONO(I) 7)BETA30(I) 8)GAMMA30(I)

FORMAT (A4,A4,2X,6E10.3)

AT1(I):
AT2(I):
ACON1(I):
BETA31(I):
GAMMA31(I):
ACONO (I):

BETA30(I):

GAMMA30(I):

The second atom in this 3-body interaction.
The third atom in this 3-body interaction.
The pre-exponential factor for this 3-body
interaction for the lambda = 1 state.

The beta value for this 3-body interaction,
for the lambda = 1 state.

The gamma value for this 3-body interaction,
for the lambda = 1 state.

The pre-exponential factor for this 3-body
interaction for the lambda = 0 state.

The beta value for this 3-body interaction,
for the lambda = 0 state.

The gamma value for this 3-body interaction,
for the lambda = 0 state.

- 19 - IDENTIFICATION OF ATOMS WITH POSITION CONSTRAINTS

**% ONLY IF NTR = 1 **%*

Constraint reference atoms are obtained by first reading

coordinates for the entire structure through file ’'PINCRD’

or 'PREFC’,

then specific constraint atoms are selected by

group. See the section on GROUP in the Appendices for format.

Does not support a namelist convention.

1/30/113

GIBBS module Page 198

- 20 - IDENTIFICATION OF ATOMS FOR BELLY RUN
%%%* ONLY IF IBELLY .GT. Q **%*

The belly atoms are loaded as groups. Consult the GROUP section
in the Appendices for a description of how to define a group.
The group definition immediately follows the end of the &cntrl

namelist. The GROUP input does not support a namelist convention.

- 21 - DEFINITION OF GROUP INPUT FOR FREE ENERGY COMPONENTS
OR DERIVATIVES
%x%%* (ONLY IF IPERAT = 4) **x*%

For free energy components, free energies will be logged

as defined by the GROUP definition, subject to the condition
that only those atoms which are part of the perturbed group
or which move with an added CONstraint will ultimately

be included. All atoms not explicitly included in a group
will be put in a final single group.

For free energy derivatives, derivatives will be logged

only for those atoms included in a group definition. Any

atom of the system may be designated as part of any group

(but each atom will be a member of at most one group).
Typically, you will place individual atoms in their own groups

when calculating derivatives.

Note that in GIBBS, GROUP input supports two new features that
can be helpful in defining the input for free energy components
or derivatives. Both allow the creation of multiple single-atom
groups:

ATOM -IAT1 IAT2

(1st atom number negative) will place each atom from IAT1 to
IAT2 in its own group.

RES -IRES1 -IRES2

(both residue numbers negative) will place each atom of every
residue in the range IRES1->IRES2 in a separate group.

Group definition syntax is otherwise the same as described in

the manual.

1/30/113

GIBBS module

Page 199

- DEFINITIONS OF INTERNAL RESTRAINTS/CONSTRAINTS

**% ONLY IF INTR > 0 (line 13) **x*
BRIEF DESCRIPTION:
Setting INTR > 0 allows the user to define here a series of
internal restraints and constraints whose force constants and

equilibrium values are a function of lambda.

Restraint/constraint definitions must be entered in the

Sformatted form shown below, not in a namelist.

Restraints/constraints are read in as pairs of lines:

line A: IAT1,IAT2,IAT3,IAT4,IUMB,IZE,ITOR,RLMDAL,RLMDA2
FORMAT (7(I5,1X),2F10.5)

line B: RKEQ1,REQ1,RKEQ2,REQ2,IPER,IPER2
FORMAT (4F10.5,2I5)

As many restraints/constraints may be defined as are desired.
A blank record signals the end of the input. This data must be
entered in the formatted form shown.

It does not support a namelist convention.

INPUT VARIABLES

IAT1-->IAT4:

RLMDA1
RLMDA2

RKEQ1

REQ1

RKEQ2
REQ2

The absolute atom numbers for the atoms defining the restraint.
If an atom number is <0, the absolute value of the atom number
is used (additional behavior for <0 values is defined when
IZE=1; see below).

IAT3 IAT4 = 0 : Bond restraints/constraints
IAT4

IAT1->IAT4 non-zero: Torsion restraints/constraints

0 : Angle restraints/constraints

:The restraint/constraint will be applied only over the range in
lambda (RLMDAl, RLMDA2).

:The force constant in kcal/mol and equilibrium value,

respectively, for the restraint/constraint at lambda = RLMDAl.
:The force constant in kcal/mol and equilibrium value,
respectively, for the restraint/constraint at lambda = RLMDA2.

1/30/113

GIBBS module Page 200

If RLMDA1=RLMDA2, the force constant and eq. value are fixed
at RKEQl and REQ1 (RKEQ2 and REQ2 are ignored).

RKEQl and RKEQ2 are ignored for constraints (ITOR=2).

If REQ1=999. or REQ2=999., the corresponding equilibrium value
is set to the current value of the internal coordinate (as
determined from the input set of coordinates PINCRD).

If ABS(REQl) > 1000, the corresponding equilibrium value is set

REQ1 < O: REQl1 = current_value - [ABS(REQ1)-1000.]
REQ1 > O0: REQl1 = current_value + [ABS(REQ1)-1000.]

If ABS(REQ2) > 1000, REQ2 is analogously reset.

Intermediate K,(4) and R,(4)

are determined by linear interpolation between the force
constants and equilibrium values at RLMDAl and RLMDA2.
No restraint/constraint is applied outside the range
(RLMDA1,RLMDA2) .

IZE:

=0 The restraint/constraint defined here is used _in addition to_
other parameters corresponding to this atom sequence from parm
(if any).

=1 The restraint parameters defined here _replace overlapping

parameters from parm (if any) for this atom sequence.

When IZE=1, any atom number IAT1->IAT4 which was specified as

< 0 has a special meaning: It allows a "wildcard" match to the
corresponding atom number when replacing parameters from parm.
For example, the sequence -1 3 8 -14 would result in a torsional
restraint which would replace parameters for all torsions
centered on the bond between atoms 3 and 8.

IZE is read but ignored when ITOR=2 (constraints).

IUMB: Determines the type of restraint.

=0 The restraint is to be considered part of the molecular force
field. The free energy contribution from the restraint is
calculated by the standard formula (c.f. Equation 2).

=1 The restraint is considered to be an "umbrella" term. The

effects on the ensemble of the restraint are evaluated using
the following function in place of Equation 2:

1/30/113

GIBBS module Page 201

AG = - RTIn(< e™/RT/RT 5 1< e?RT >y)

where ¢ is the sum of all umbrella restraint terms and

AV is as described for Equation 2.

IUMB is ignored for constraints (ITOR=2).
IUMB = 1 will not work correctly with slow growth or

thermodynamic integration.
ITOR: Functional form/constraint flag

=0 If this is a torsional restraint, a potential of the form
2
Ktor (T - TO)

is used. This functional form is always used for bonds and
angles (ITOR = 0 has no effect for bonds/angles).

=1 If this is a torsional restraint, a potential of the form
Kmr (1 - COS(T - TO))

is used. (ITOR = 1 has no effect for bonds/angles).

= 2 Then a constraint, rather than restraint, is applied to the
corresponding internal coordinate. This is applicable to all
types of internal coordinates (distances, angles, torsions).
If NCORC = 1 (line 9), then an effective "potential of mean
force" (PMF) contribution to the free energy will be calculated
for this internal coordinate.
General "holonomic" internal constraints are used, as described
in Reference 7.

When ITOR = 2 (internal is being constrained), IZE is ignored,
and the following occurs:

For bonds and angles, if the constrained internal matches an
internal in the topology file, force constant parameters
for matching internal will be set to 0.

For torsions, if the constrained internal matches an internal
in the topology file, A) forces for all torsions centered on
the same bond will be omitted B) The contributions to the
free energy of all torsions centered on the same bond as the
constraint will be calculated. This is necessary because
several torsions can be centered on a central bond, and
there is no fixed relative arrangement for these torsions.

IPER: IPER can be used to define a simulation where two internal

coordinates will be varied with two independent values of lambda.
Such a simulation can be used to generate a free energy

1/30/113

GIBBS module

Page 202

internal-internal map (sort of a free energy equivalent to a

Ramachandran map) to be generated.

NOTE
The output of this option is somewhat complex, and
is intended for post-processing by a separate program. Any 2-D
run of value will necessarily be very compute-intensive, and a
number of issues must be considered before undertaking such a
simulation. This option should generally be avoided by the novice
user. If you are considering performing such a simulation, you

are urged to read Reference 8 (see above) first.
For use with the IPER flag, we define:

"primary" lambda: the "normal" lambda; that is, the lambda used
in standard GIBBS runs to describe how the
system varies between the initial and final

states.

"secondary" lambda: a second lambda, which is translated from
0->1 at each value of the "primary" lambda.

This restraint will vary with the primary lambda; i.e. the
equilibrium value and force constant will be a function only of

the primary lambda. This is standard behavior.

This restraint will vary with the secondary lambda; i.e. the
equilibrium value and force constant will be a function only of
the secondary lambda. Lambda will be varied from 0->1 for this

restraint in a series of IPER equally-spaced intervals (windows).

The "secondary" lambda is not used unless one or more restraints
are defined with IPER > 0.

The number of windows used for each "primary" restraint will
be the same, and the number used for each "secondary" restraint
will be the same. The first IPER(I) > 0 sets the number of

windows used for _all_ secondary restraints.

If secondary restraint(s) are requested, the value of IPER2 (see
below) corresponding to the first value of IPER(I) > 0 defines
the number of windows used for every primary restraint. Note
that any dynamically modified window or slow growth flags (card
14) will be defeated in this case.

When calculating PMF-type energies (if NCORC=1),

constraints will be applied in two cycles. First, dG will be
calculated for +-d(internal) for only those internals for which

1/30/113

GIBBS module Page 203

IPER=0. Then a dG will be calculated +-d(internal) for only
those internals for which IPER>0.

Any parameters (other than constraints) that vary with lambda
will only change when lambda for the primary constraints changes.
You will typically define the "perturbed group" (see the PARM
module) to contain no atoms, when using "secondary" restraints/

constraints.

If IPER > 0, window or dynamically-modified window growth must
have been requested (line 14). IPER cannot be set > 0 with
slow growth or with thermodynamic integration (IDIFRG > 0).

The matrix of energies from a 2-D run is contained in file
CONSTMAT. A matrix can be generated with either IDWIDE = 0 or
IDWIDE = 1, but it is strongly recommended that IDWIDE = 1

(no double-wide sampling) be used. In this case, five free
energy difference are evaluated from each ensemble,
corresponding to moves from (laml, lam2) to

(laml, lam2+d lam2), (laml, lam2-d lam2), (laml+d laml, lam2),
(laml-d_laml, lam2), (laml-d_laml, lam2-d lam2). This set
allows the whole free energy map to be evaluated most
efficiently (see the Pearlman and Kollman reference [8] noted
above) .

The "secondary" lambda always changes in the "forward" direction,
always starts at 0.0, and always ends at 1.0. After lambda has
gone from 0->1. The primary lambda is incremented one step, the
secondary lambda is reset to 0, and another cycle of secondary
lambda changes occurs. At the start of each cycle of changes in
the "secondary" lambda, the current coordinates are stored in
file CNSTSCRT.

IPER2:If IPER > 0 for a particular restraint/constraint ("secondary"
restraints defined), IPER2 gives the number of "windows" used
in translating the "primary" lambda from 0 to 1. See the
description of IPER above. If IPER > 0, IPER2 fixed-width windows
will be used for the "primary" restraints, regardless of the
behavior requested by ISLDYN, etc. (lines 14-ff).

++++++ END OF INPUT ++++++

Variables printed in the unit 6 output file but not defined in
the user input file:

NPM, NSM, NRAM, IPTRES, IPTATM, NSPSOL, SSPSTR

1/30/113

GIBBS module Page 204

Choices Affecting Free Energy Calculations

David A. Pearlman
Dept. of Pharmaceutical Chemistry
University of California, San Francisco, CA 94143-0446
1/91

The development of ever-more-powerful computers, combined with the wide dissemination of
modeling packages like AMBER, puts the power to perform valuable calculations in the hands of an
increasingly large number of scientists. It is tempting to say that, given the increasing sophistication of
such programs, all one needs is the appropriate hardware and software to perform good experiments.

But this is not the case. As modeling programs have grown more sophisticated, they have
sprouted an ever-increasing array of options—options which must be properly chosen, if worthwhile
results are to be obtained. And even if the options are appropriately set, one must ensure that the pro-
gram is properly suited for the chosen application. Nowhere in AMBER is this more true than the
GIBBS free energy module.

Here we discuss several issues which impinge on developing an appropriate GIBBS input file,
and on interpreting the results produced. One is also strongly encouraged to review the literature refer-
enced here and in the preface to the GIBBS program.

I. What method should be used to calculate the free energy?

GIBBS version 4.0 offers five choices of method for calculating the free energy difference
between two states. These include the general classes slow growth, free energy perturbation, and ther-
modynamic integration, as well as dynamically modified variants of the latter two. These were
described in the introduction to GIBBS. As yet, it has not been shown conclusively what method is
"best" for any particular type of problem.

(1) Slow growth: Some early studies indicated that slow growth might be a more efficient tech-
nique for free energy calculation than fixed-width windows'. More recent work® has indicated
that the implicit assumption of slow growth—that A changes slowly enough that the system can
be assumed to be in equilibrium at each step—does not strictly hold. The consequences of this
"Hamiltonian lag" have not been quantified.

(2) Window Growth: The equations of window growth, or Free Energy Perturbation (FEP) are
exact, and, in principal, if one has the computer resources to perform sufficient sampling, one
can obtain very accurate results. In practice, FEP suffers from two significant difficulties. The
first is that, in reality, we do not always sample to convergence. Unfortunately, no reliable test
to prove convergence has been developed. The second problem with FEP is that Equation (2)
requires that we obtain the ensemble average of a quantity which relies of the difference
between the potential functions representative of both states A(i) and A(i +1). But the average
is evaluated from the ensemble of states visited when MD is run using the potential function
for state A(i). Thus, if states A(i) and A(i +1) are too dissimilar, it will be very difficult to
obtain reliable statistics. Reducing the spacing between adjacent A states helps circumvent this
problem, but at a significant additional cost. And even then we do not have any reliable meth-
ods for assuring the problem has been avoided?.

1/30/113

GIBBS module Page 205

(3) Thermodynamic Integration (TI): TI is appealing because it avoids the problem in sampling
V(A +1))-V(A(i)) described for FEP above. But TI has its own problem: The driving equation
of TI is an integral (Equation 4), which in practice must be calculated approximately by evalu-
ating the integrand at finite intervals of A. Of course, TI is also susceptible to errors when a
simulation is not run sufficiently long to obtain a converged value of the averaged quantity
which serves as the integrand.

At this time, the relative rates of convergence of the averaged quantities required by FEP and
TI, which will directly impinge on the reliabilities of the two techniques, have not been deter-
mined.

Note that we approximate the integral using the trapezoidal algorithm, i.e.
AG; = G(AG+1)) + G(A(D) = (KIVIOA >0y — < IVIIA >;;) (AGE+1) = AD)/2 . 5)

This integration method should be reasonably accurate in most cases. But in case the user
wishes to try their own integration scheme, setting ISANDE = 1 with TI will also force report-
ing of the values of < dV/dA >, and several other averages at every evaluation point (the
other values reported relate to calculating the enthalpy/entropy, as described below).

(4) Dynamically Modified Windows (DMW): In dynamically modified windows®, the § A spacing
between consecutive windows in FEP or TI is continually changing, to achieve a relatively
constant free energy change per window. This should improve the efficiency of the calculation,
by focusing proportionately more simulation time on those ranges of A where the free energy
is changing more rapidly. We have, in fact, shown that dynamically modified windows signifi-
cantly improve the sampling efficiency of FEP simulations for model compounds®. The biggest
drawback to DMW is that, because we do not know a priori the exact shape of the free energy
versus A curve when we start a simulation, we cannot predict with certainty how long the sim-
ulation will take to go to completion. This caveat noted, it appears that DMW would be benefi-
cial to most FEP and TI simulations.

’ I1. Enthalpies and entropies

GIBBS Version 4 allows the user to request that the enthalpy and entropy changes be reported in
addition to the free energy (which is always reported). Two different schemes are used to calculate
these quantities, depending on the free energy calculation method. Note that in either case, the
enthalpy and entropy are necessarily dependent on being able to reliably extract small differences
between averages of (often large) total system energies. In the case of free energy, on the other hand,
we need only measure the average of a potential difference or a derivative. For this reason,
enthalpy/entropy estimates are typically more than an order of magnitude less accurate than their free
energy counterpart. One should be very cautious when interpreting them.

For FEP, the approximate equations derived in Ref. 4 are used. These approximate the required
temperature derivatives by a finite difference. The equations used are derived from the FEP expression,
and the sum of the resulting (enthalpy - T*entropy) will equal the reported free energy.

For TI, the enthalpy and entropy are evaluated using exact-form integral relationships presented
in Ref. 5. The (enthalpy - T*entropy) calculated by this method will not necessarily equal the reported
total free energy; the difference between the two quantities can be taken as a crude indication of the
reliability of the enthalpy/entropy values. The integrals are approximated by the trapezoidal rule, as

1/30/113

GIBBS module Page 206

described above (Equation (5)).

’ III. Mixing rules for "vanishing" atoms ‘

By default (and without exception in older versions of Gibbs), the optimal interaction r *
between two atoms i and j is given by

r*g(A) = ¥ (A) +r*;(4) (6)

i

This is fine when neither atom "vanishes" at either A endpoint. But now consider the case where atom
1 vanishes at A=0. Then

FA0) = r 5O+ 0) = 1% 0))

Thus, r *;; never gets smaller than r *; (0). At A=0, the mixed well depth, £(0), will also be 0. But at
any value of A just slightly >0, =0, and suddenly a steric "gap" between atoms i and j of r *; will be
required. This can lead to sampling inefficiencies. A better solution is to shrink r *;; (1) to a user-cho-
sen small value as one of the atoms "vanishes". This is the effect of variable IDSXO (line 10).

IV. Using Dynamically Modified Windows ‘

The theory of DMW, and some exploratory applications, are described in Ref. (3). A sample
input for GIBBS is shown below, follow by a few important explanatory notes.
line
14 0 40.00000 0.00000 -0.02500 +2 O 100 100 O O O O
l4a 8 2 0 0.8000000 0.0100000
14b -10 20 0.0001000
l4c 1.0D-5 1.D-10 1.0D-2 0.10000000 0 0 -1.00

(format compressed to fit page)

Line 14
We set ALMDEL = 0, ISLDYN=+2, IDIFRG=0, NSTMEQ=100, and NSTMUL=200. This results in
dynamically modified window FEP, with 100 steps of equilibration and 100 steps of data collection per
window.

Line 14a:

On the next line, we set IAVSLP = 8, IAVSLM=2, and CORRSL=0.8. This means that, at most, the 8
most recently calculated (A, accumulated_free_energy) points will be used in approximating the
dG/0A slope. IAVSLM=2 means that as soon as 2 points are available, we will calculate the slope from
all available points, until the maximum of 8 is reached. If the best-fit line through the points fits the
data with a correlation coefficient (CC) < 0.8, then the number of points used in the current slope
determination will be halved, the slope and CC will be recalculated, and the comparison against CC
will be performed again. A minimum of two points are always used to calculate the slope.

AMXMOV, which is set to 0.01 here, is the target change in free energy per window we are aiming for.
The 6 A change on the next step is calculated as

1/30/113

GIBBS module Page 207

AMXMOV
A = ————— ()
(0G/oA)

Note that since we don’t know a priori what the free energy versus A curve will look like, we do not
know exactly how many steps will be required to complete the simulation. The total number of MD
steps required will depend both on AMXMOV and on NSTMEQ and NSTMUL (line 14). NSTLIM
can be set to -1 on line 8 to force the program to continue until the total required number of steps have
been performed. Also note that the value of AMXMOV used will often depend on the magnitude of
the total anticipated free energy change. For example, one would not typically want to use AMX-
MOV=0.01 and NSTMEQ=NSTMUL=100 if the total energy change is 50 or 100 kcal/mole, as it can
be for certain electrostatic changes.

line 14b:

IAVDEL < 0, which means that the AG ,,,4r¢ = AG eyerse cOmparisons will not be used in scaling the
widths of A windows. The viability and reliability of changes made using these types of comparisons
has not yet been established.

line 14c:

ALMDLO is set to 1.0D-5. This means that the first IAVSLM window steps (before we have enough
points to calculate a slope) will be made with this small step size. This step is chosen to be small in
case the energy is changing quickly in this region.

DLMIN is set to 1.0D-10. Typically, a value of DLMIN such as this would have no effect, since it is
unlikely that the slope and AMXMOV would be such to require a step this small in the first place. At
any rate, steps calculated to be smaller than DLMIN are reset to DLMIN. DLMIN can be valuable in
some cases when one wishes to limit how slowly a simulation can progress.

DLMAX is set to 1.0D-2. Setting an appropriate value for DLMAX is important. If the G versus A
curve has any points of inflection, we might calculate a slope of approximately O at one or more
points. In this case, the simple formula used to determine the next step size would indicate a very large
step (as large as 1.0, the whole simulation length). This would be incorrect, as the slope could clearly
turn significantly non-0 in a future range of A. DLMAX bounds the change in such cases.

AMXRST is set to 0.10. The slope we calculate is only an approximation of the "true" instantaneous
slope, and the current slope is only an estimate of the slope over the next A interval (window). Thus, it
is possible that when we calculate the actual free energy change over the next window, it will be an
unacceptable amount larger than the target value. In such a case, we may want to decrease the A step
size for this window and re-evaluate the energy. AMXRST is the largest allowable energy for a step. If
the energy is > AMXRST, the 5 stepsize is reduced, and the energy for the window recalculated.
Note that setting AMXRST too close to AMXMOV will result not only in too many windows being
reevaluated (inefficient), but can also lead to biased sampling.

ALMSTP(1) is set to -1.0. If 0 < ALMSTP(1) < 1.0, one can prescribe that the values of AMXMOV,
DLMIN, DLMAX and AMXRST vary over different ranges in A, as described in the input discussion.

V. Potential of Mean Force (PMF) calculations

It is often of interest to determine the free energy difference between two states which differ in
conformation, rather than in composition. For example, one might be interested in the free energy pro-
file for rotation about a ring in a protein. Such a profile can be determined by performing a PMF

1/30/113

GIBBS module Page 208

simulation. To perform such a simulation, one must be able to define conformation as a function of
lambda within the context of an otherwise free MD simulation. Fortunately, methods have been devel-
oped which allow selected internal coordinates to be constrained to chosen values, while otherwise
affecting the MD trajectory only minimally. The best known of these is the SHAKE method for bond
constraints. The methods of SHAKE have recently been extended to be generally applicable to angles

and torsions®.

GIBBS version 4.0 allows the user to define any chosen set of internal coordinates to be
A-dependent constraints. By setting NCORC=1 (line 9), one can calculate the free energy changes that
accumulate as the internal constraints are translated from those of the initial state to those of the final
state. If one graphs the free energy changes as a function of the restraint target values (themselves a
function of 1), one gets the free energy profile for conformational changes.

Any constraint with a target value which is itself a function of A will contribute to the free energy
as lambda changes. This means that if SHAKE is used to constrain bonds of the perturbed group, and
any of those bonds "grow" or "shrink" during the simulation, there will be a corresponding contribu-
tion to the free energy. In earlier work, this contribution has been overlooked, but we have shown that
it must be included to reliably calculate free energies using the FEP method’. The contribution in such
a case can be calculated simply by setting NCORC=1.

Constraints other than SHAKE-en bonds can be defined by setting INTR > 0 (line 14) and pro-
viding the definitions after the standard input (see above). Any internal coordinate can be used; Be
aware, however, that any internal coordinate which is part of a closed ring will present a special set of
(often tricky) considerations (see below). In typical use, no compositional (or topological) change is
performed when a PMF simulation is being carried out. A GIBBS-format topology file is still required
from PARM, though. An appropriate topology file with no atoms in the "perturbed group" can be gen-
erated by using the PERT option in PARM, but with no atoms defined in the pert group; i.e.

Title: Generic PERT topology with no atoms changing
BIN FOR STDA PERT

0 0 0
0 0 0 0
PERTURBATION
No atoms change
END
END

In general, PMF calculations within GIBBS may be performed with any method — FEP, TI or
slow growth. (Before version 4.1, only FEP could be used for PMF calculations.) Note that there is one
scenario where only the TI (with "constraint forces") method may be used: when any constrained inter-
nals whose target values change with lambda lie within a closed loop. The loop can either be part of
the molecular topology, or as a result of the added topology of the constraint(s). To understand why
neither FEP nor TI with "potential forces" can be used in such a case, you must recognize that for
these latter methods, part of the procedure for calculating constraint contributions requires that we
determine which atoms of the system are affected by a rigid body translation/rotation about the con-
strained internals. But the requisite set of atoms is not unambiguously defined when the constraint lies
within a closed loop. Fortunately, the "constraint force" implementation of TI doesn’t require that we
make such a determination.

It is important to note that PMF calculations are typically very compute-intensive. For FEP,
Gibbs will determine which non-bonded pairs have an interatomic distance which varies with one or
more constraints, and only these are re-evaluated in determining V. This helps reduce the amount

1/30/113

GIBBS module Page 209

of computer time required for a FEP simulation, although the total amount of time can remain high.
The additional cpu overhead for calculating constraint energies with TI is negligible in all cases.

While we have a good error check for some torsional PMF’s (the free energy values after rotating
360° should be the same), we typically have no reliable way of determining that for other simulations
enough sampling has carried out to determine a converged PMF curve. Our best guard against spurious
results is careful consideration of the specific problem and the inherent relaxation timescales of the
surroundings.

VI. Error estimates and convergence

One of the thorniest issues related to free energy calculations is estimating the error in the
results’™. At present, this error is typically estimated in one of four ways:

(1) Two separate free energy simulations can be run, one with A progressing from 0—1, the sec-
ond with A progressing from 1—0. These two calculations should yield the same free energy
value, and the difference between them (the "hysteresis") gives a lower bound on the estimate
in the calculation. Errors derived in this way often underestimate the actual error’ .

(2) The difference between "forward" and "backward" values for a single run. As described in the
introduction, when FEP or slow growth is performed, double-wide sampling can be carried
out. This ultimately results in two pseudo-independent values for the free energy, one calcu-
lated from the sum of all the A(i)—A(i + 1) energies, and the other calculated from the sum of
all the A(i))—=A(i —1). If the results were exact, these values would be the same. In practice,
they will not be, and their difference gives a crude lower bound on the inherent error. Error
estimates derived in this manner tend to be even less reliable than those estimated using
method (1), and are usually worthless for slow growth type runs®.

(3) Two or more simulations are run under equivalent but different conditions. For example, star-
ing with different randomly assigned sets of velocities. The difference between the free ener-
gies provide an estimate to inherent errors. These estimates are subject to the same problems
as (1) above.

(4) A series of simulations is run which differ in the respective amounts of sampling done. For
example, simulation 1 might use 100 steps of equilibration and 100 steps of data collection at
each window, while simulation 2 used 200 steps of each. If the value from the shorter simula-
tion was accurate, the value from the second simulation should be acceptably close to it. If it is
not, the simulation must be run even longer to confirm convergence. This method probably
provides the best insurance that convergence has been reached, but it is not definitive, and it is
also the most costly.

It must be understood that none of the above methods allows a completely reliable error estimate.
At best, they provide a lower bound on the error. A large apparent error is a good indication that the
results obtained are not appropriately converged. But a low apparent error does not necessarily indi-
cate a converged and accurate simulation. This is clearly shown in Reference (7).

1/30/113

GIBBS module Page 210

VII. Changing parameters versus dual topologies

In "standard" operation, free energy changes in GIBBS are effected by transforming the potential
representative of state 1 to that representative of state 2. The topology of the system does not change.
To make atoms non-interacting at one of the endpoints, they are assigned zeroed non-bond and electro-
static parameters at this endpoint.

The improved mixing rules which can be used in GIBBS Version 4 (IOLEPS = 0, line 10) allow
a second method to be used. One result of these new mixing rules is that if any pair of atoms "exist"
only at mutually exclusive endpoints (e.g. atom i exists in state 1 but not state 2; atom j exists in state
2, but not in state 1), then effectively no non-bonded interactions are ever calculated between them.
This means that, in lieu of the "standard" method which uses a single topology, we can define dual
topologies, one corresponding to the 4 =0 endpoint, and the other corresponding to the 4 =1 end-
point. For the former topology, all non-bonded parameters would be defined to be O in the A =1 state.
Similarly, all non-bonded parameters for the latter topology would be 0 at A = 0. The two topologies
would then never "see" each other at intermediate values of A. Defining dual topologies can aid in per-
forming free energy calculations where bond connectivities must change. Dual topologies is the
method incorporated into the "CHARMM" program.

On an efficiency basis, the relative merits of the two methods have not been established. Addi-
tional discussion of the two methods can be found in Ref. (7).

References

(D) Straatsma, T.P., Berendsen, H.J.C. & Postma, J.P.M. (1986) J. Chem. Phys. 85, 6720.
2) Pearlman, D.A. & Kollman, P.A. (1989) J. Chem. Phys. 91,7831

3) Pearlman, D.A. & Kollman, P.A. (1989) J. Chem. Phys. 90, 2460.

(@) Fleischman, S.H. & Brooks, C.L. (1987) J. Chem. Phys. 87, 3029.

(5) Yu, H.-A. & Karplus, M. (1988) J. Chem. Phys. 89, 2366.

(6) Tobias D.J. & Brooks, C.L. III (1988) J. Chem. Phys. 89,5115.

@) Pearlman, D.A. & Kollman, P.A. (1991) J. Chem. Phys. 94,4532.

8) Pearlman, D.A. & Kollman, P.A. (1989) In: Computer Simulation of Bimolecular Systems:
Theoretical and Experimental Applications (van Gunsteren, W. and Weiner, PK, eds.), p. 101,
Escom Science Publishers, Netherlands; van Gunsteren

9) van Gunsteren, W., ibid, p 27.

1/30/113

ANAL module Page 211

ANAL

Usage:

anal [-0] -i analin -o analout -p prmtop -c inpcrd [-ref refc
-r rmscrd -s compac -pl pdbl -p2 pdb2 -z zmat]

-0 Overwrite output files if they exist.

This is the static analysis module of AMBER. Its purpose is to do energetic and structural analy-
ses of static structures. This program should be run before MIN, in order to detect problems in model-
built or xray derived structures. Typical problems that may be found this way are close nonbonded
contacts and grossly distorted structure. A generic anal.in input file for this purpose is provided in the
templates directory of the distribution.

An important function of this program is decomposition of the energy among different groups of
atoms in order to find the interaction energies between different parts of the system. The program puts
those atoms which are not in explicitly defined groups into a separate group. In the case of a belly or
partial minimization the unfrozen part of the system can be defined as the desired groups and the
frozen part will be automatically taken by the program as an additional group.

The following options are available:

a) energy decomposition analysis between groups of atoms
b) sugar puckering analysis for DNA or RNA

c) helical parameter analysis for DNA or RNA

d) RMS fit between two structures of identical topology

e) compaction analysis between two structures

f) hydrogen bond analysis

g) output pdb coordinates

h) generate z-matrix for gaussian 80

i) calculate internal coordinates for the entire structure

j) calculate internal coordinates for specific dihedrals

On VMS systems files are assigned by Fortran unit number. These are given below along with a
description of each file. Files shown in [] above are optional, others are mandatory.

1/30/113

ANAL module
Files:

analin 5
analout 6
prmtop 20
inpcrd 21
refc 24
rmscrd 26
compac 28
pdbl 33
pdb2 35
zmat 7

Input description:

Page 212

Input control data for the analysis run

Output results

Input Molecular topology file from PARM

Input Coordinates to be analyzed

Input positional constraint coordinates

Input reference set of coordinates for RMS fit

Input reference set of coordinates for compaction
analysis

Output pdb coordinates; these correspond to the
coordinates in the inpcrd file, but will have been
translated so that the origin is at the center of
mass.

Output pdb coordinates; these correspond to the
coordinates in the rmscrd file, but will have been
rotated and translated for best fit to the inpcrd
coordinates.

Hence, for a "typical" use of the RMS option, one
would use inpcrd for the "original" (e.g. X-ray)
coordinates, and rmscrd for the "final" coordinates.
Then, if several simulations were compared to the same
"original" structure, all of the "pdbl" files would

be identical, and the various "pdb2" files would be
rotated and translated more maximum fit to these
original coordinates.

Output GAUSSIAN 80 zmatrix

TITLE

FORMAT (20A4)

Title for identification.

NTX , NTXO , NRC , NRCX , NGRPX , KFORM

FORMAT (51)

1/30/113

ANAL module Page 213

NTX

NTXO

NRC

NRCX

KFORM

o
= o

NTB

Format of coordinates.

Formatted (inpcrd, unit 21)
Unformatted (inpcrd, unit 21)

Read but not used
Option to read position constraints.

no constraints
constrained minimization

The atoms to be constrained are read as groups with
different harmonic force constants for each group.

Consult the section on GROUP in the Appendices for

group specification format.

When using positional constraints, the constrained

groups are given first in the group input followed

by the groups for energy analysis.

Format of constraint coordinates. The constraint
coordinate file has the same organization as the structure
coordinates.

Formatted (refc, unit 24)
Binary (refc, Unit 24)

Maximum number of groups that the structure can
be divided into for analysis

Default = 70
Structure may be partitioned into N different groups

The Flag for the type of Topology File

Binary (prmtop, unit 20)
Formatted (prmtop, unit 20)

NTB , BOX(1l) , BOX(2) , BOX(3) , BETA
FORMAT (I, 4F)

Flag for periodic boundary conditions.
(not yet operational)

Periodicity is applied. Box is truncated octahedron

(BETA = 90)
No periodicity is applied

1/30/113

ANAL module Page 214
=+n Periodicity is applied. Box is rectangular or monoclinic
depending on the value of BETA
BOX(1l..3) Lengths of the edges of the periodic box
BETA Angle between the X- and Z- axes of the box in degrees.

the Y- axis is assumed to be orthogonal to the other
axes. (0 < BETA < 180)

-4 - NTF , NTID , NTN , NTNB , NSNB , IDIEL
FORMAT (6I)
NTF Flag for force evaluation.

1 complete interaction is calculated

= 2 bond interactions involving H-atoms omitted

= 3 all the bond interactions are omitted

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle
interactions are omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions
are omitted

NTID Flag for improper dihedral contribution (read but not used).
NTN Read but not used
Note: non-bonded interactions are now always calculated

using a residue based cutoff. The nb pairs are stored as
residue pairs. This uses substantially less memory than
the atom pairlist in the minimizer.

NTNB Read but not used
NSNB Read but not used
IDIEL Flag for the type of dielectric function to be used in

1/30/113

ANAL module Page 215

calculating the electrostatic energy.

= 0 distance dependent dielectric function

= 1 constant dielectric function

-5 - CuT , SCNB , SCEE , DIELC

FORMAT (4F)

CuT The cutoff distance for the non-bonded pairs.

SCNB 1-4 vdw interactions are divided by SCNB.
if SCNB .le. 0.0 then SCNB = 2.0

SCEE 1-4 electrostatic interactions are divided by SCEE
if SCEE .le. 0.0 then SCEE = 2.0

DIELC Dielectric multiplicative constant for the electrostatic
interactions. If DIELC .le. 0.0 then DIELC = 1.0. DIELC
and IDIEL are coupled. For example to obtain a dielectric
"constant’ of 4rij set DIELC=4 and IDIEL=0.

-6 - Printout of energies beyond specified values. You
must use the ENERGY keyword to obtain output.
IMAX , EMAX(I) , I =1, 9

FORMAT (I, 9F)

IMAX Flag for printing the energy contributions.

= 0 no printing

= 1 energy contributions will be printed

EMAX (1) All the bonds whose energy contribution is greater
than EMAX(1l) will be printed.

EMAX(2) All the angles whose energy contribution is greater
than EMAX(2) will be printed.

EMAX (3) All the dihedrals whose energy contribution is
greater than EMAX(3) will be printed.

EMAX (4) All the 1-4 vdw whose energy contribution is greater

1/30/113

ANAL module Page 216

greater than EMAX(4) will be printed.

EMAX(5) All the 1-4 eel whose energy contribution is greater
than EMAX(5) will be printed.

EMAX(6) All the vdw nb pairs whose energy contribution is
greater than EMAX(6) will be printed.

EMAX(7) All the eel nb-pairs with absolute value of energy
greater than EMAX(7) will be printed.

EMAX (8) All the H-bond pairs whose energy contribution is
greater than EMAX(8) will be printed.

EMAX(9) All the constrained atoms whose energy contribution
is greater than EMAX(9) will be printed.

-7 - The control for doing the desired options. When a
control word is encountered the program reads the
needed input for that option, then looks for the
next control word. This process continues until
the word STOP is read.

IOPT
FORMAT (A)
IOPT The control word for the option.
"ENERGY’ Energy decomposition into groups
"PUCKER’ Sugar puckering analysis
"HELIX' DNA/RNA helical parameters analysis
"RMS’ RMS fit between two structures of identical topology
'VOLUME'’ Compaction analysis

"HBOND' Hydrogen bond analysis

"GAUSS' Punch the Z-matrix for GAUSSIAN 80 (to unit 7)
Note: be careful to check the connectivity especially

1/30/113

ANAL module Page 217

for the first dihedral angle.
"PDB’ Write the coordinates in pdb format (to unit 33)

'"TELL’ Output of internal coordinates for the entire system.
(TELL in the edit module gives a more complete description)

"TORSION’ Output of torsion angles only for specified torsions.
(avoids the voluminous output of TELL)

"STOP’ Control to terminate the run

GAUSS, PDB, and TELL require no further input. The
following section describes additional input for those
options that require it.

Parts of the molecule for which interaction energies
are to be calculated are entered in GROUP format. See
the section on GROUP in the Appendices for details.
Groups are read sequentially in any order. Each group
is terminated by an "END" card.

The ENERGY option is terminated by another "END" card.

PUCKER
PUCKER 1: NMIS
FORMAT (I)
NMIS The number of unique non-standard or modified bases in

the DNA molecule. "Standard" means DNA from the Amber
United Atom database. Anything else (including residues
from the Amber all-atom database) is considered nonstandard.
Important: If any of the standard names ADE, CYT, GUA,

THY, or URA are used with other than standard united atom
topology, make NMIS NEGATIVE. If any of the standard

names are redefined, they all must be.

1/30/113

ANAL module Page 218

PUCKER 2: NAMBAS(I), NRA(I), (KRA(J,I), J =1, 20), I = 1, abs(NMIS)

NAMBAS

NRA

KRA

%x%* THIS CARD READ ONLY IF abs(NMIS) .GT. 0 ***

FORMAT (A,21T)

Residue name of the non-standard base.

The number of sugar atoms in base (I) to be used for
the puckering analysis.

The atom numbers to be used, relative to the first
atom in the base residue.

HELIX 1: IBPGEN , NMIS , NBASP , NMISF , NFOSP

IBPGEN

NMIS

NBASP

NMISF

NFOSP

FORMAT (5T)

Flag for the base pair generation.

0 DNA is standard. This means that the DNA
bases are from the AMBER united atom data base.
The base pairing will be generated automatically

1 Non-standard DNA. The base pairing must be read
explicitly from the following four parameters and
lines below.

The number of types of non-standard or modified

bases in the DNA molecule.
Important: If any of the standard names ADE, CYT, GUA,
THY, or URA are used with other than standard united atom
topology, make NMIS NEGATIVE. If any of the standard
names are redefined, they all must be.

The total number of base pairs in the molecule
if any nonstandard residues are present.

The number of types of non-standard or modified
phosphate residues in the DNA molecule.

The total number of phosphate pairs in the DNA

molecule if any non-standard residues (either base
or phosphate) are present.

1/30/113

ANAL module

HELIX 2: NAMBAS(I), NRA(I), (KRA(J,I), J =1, 20), I = 1, abs(NMIS)

NAMBAS

NRA

KRA

%%* THIS CARD READ ONLY IF abs(NMIS) .GT. 0 ***

FORMAT (A,21T)

Residue name of the non-standard base.

The number of atoms in base (I) to be used for
calculating the mean plane of the base.

The atom numbers to be used, relative to the first
atom in the base residue.

HELIX 3: NAMF(I) , NFRA(I) , KFRA(I) , I = 1, NMISF

NAMF

NFRA

KFRA

HELIX 4:

KBASA

KBASB

****%* THIS CARD READ ONLY IF NMISF .GT. Q ****%
FORMAT (A, 2I)

Residue name of the non-standard phosphate.

The number of atoms to be considered for finding

the helical twist. (it is always 1 since the twist

is taken as the angle between two phosphate pairs)

The relative position of the P atoms in the residue.

KBASA(I) , KBASB(I) , I = 1, NBASP

****%* THIS CARD READ ONLY IF NBASP .GT. (0 ****%
FORMAT (21I)

Residue numbering for DNA analysis is sequential from
the 5’ end of the first chain to the 3’ end, continuing
from 5’ end of the second chain and ending at the 3’
end of the second chain. All bases must be paired in
this way if NBASP = 0.

The residue number of the first base in a pair.

The residue number of the second base in a pair.

1/30/113

ANAL module

KFA(I) , KFB(I) , I = 1, NFOSP

%%%% THIS CARD READ ONLY IF NFOSP .GT. 0 ##*#*%*%*

FORMAT (2I)

See note on residue numbering above.

The residue number of the first phosphate in a pair.

The residue number of the second phosphate in a pair.

HELIX 5:
KFA
KFB
RMS 1:
NTXP
=0
=1
FACT
JGROUP
=0
=1
IPDB
=0
=1
IMOVE
=0
=1

NTXP , FACT , JGROUP, IPDB , IMOVE

FORMAT(I,F,31I)

Format of the reference set of conformer coordinates to be

read for the rms fit.

Formatted input

Unformatted input (same as the initial binary coordinates)

The threshold for printing the deviation of individual
atoms. The default is 0.02.

Compare all atoms for rms fit

Compare only those atoms read in GROUP format from unit 5

No output of the rotated coordinate sets.
Output the rotated coordinate sets.

The molecules are NOT rotated to the principal axes
The molecules ARE oriented along the principal axes
NOTE: principal axis transformation is not required
for RMS fitting.

1/30/113

ANAL module Page 221

VOLUME 1: NTXP
FORMAT (I)
NTXP Flag for type of format of the reference coordinates

of the conformer whose compaction is to be calculated.

= 0 Formatted input
= 1 Binary input (same as the initial binary coordinates).

HBOND
HBOND 1: CUTHB
FORMAT (F)
CUTHB The cut off distance for chosing the hydrogen bond

pairs. The default is 4.0 Angstroms

TORSION 1: Four atom names, free format. All torsion angles between
atoms with these names will be reported. This card may
be repeated.

TORSION 2: "END’ to end TORSION input.

++++++ END OF INPUT ++++++

Rev A Revision by: George Seibel
ANAL 3.0 Authors: U.C. Singh, P.K. Weiner and S.J. Weiner
Director: P.A. Kollman

Department of Pharmaceutical Chemistry

School of Pharmacy

University of California

San Francisco CA 94143

Phone (415) 476 4637

1/30/113

MDANAL module Page 222

MDANAL

Usage:

mdanal -i mdain -o mdaout -p prmtop -a avgpdb
-g pltfil -c movcon -m movcrd

This molecular dynamics analysis program was written in Sept 1983, based on software provided
by W. F. van Gunsteren and updated on Dec 1985 for version 3.0. Revised Nov 1989 for version 3.0
Rev A, and is unchanged for version 4.0. In version 4.1 much of its functionality is duplicated by
CARNAL. MDANAL is not supported and will be removed in a later release, so use of CARNAL is
recommended.

In addition to the command-line file assignments, the trajectory files are assigned by Fortran unit
number on Unix as well as other systems. On VMS systems all files are assigned by Fortran unit num-
ber. These are given below along with a description of each file. Assignment of Fortran units on
Unix is described below.

file unit purpose
mdain 5 Input: Control data for the run
mdaout 6 Output: Results and diagnostics

prmtop 10 Input: Molecular topology file from PARM

avgpdb 8 Output: Averaged coordinates in PDB format

pltfil 7 Output: correlation plots in "Curvy" format
movcon 2 Output: Connectivity info for movies

movcrd 3 Output: Coordinates for normal mode movies

9 unit to store intermediate results for calculating
different correlation time functions.

11 unit to store subaverages.
12 - N files from which the coordinates of the dynamics
run are to be read for averaging. (the number of

coordinate sets in each file is arbitrary).

The following csh script demonstrates the assignment of Fortran logical units on a Unix system.
"In —s" is analogous to "assign" on VMS. The trajectory files mdeq.trj and mdeq2.trj are linked to

1/30/113

MDANAL module Page 223

fort.12 and fort.13, respectively. At the end of the run the links are removed with rm.

#!/bin/csh -f

#

mdanal demo: cart. coord averaging

#

In -s mdeq.trj fort.12

In -s mdeqg2.trj fort.13

mdanal -i mdan.in -o mdan.out -p crown.top -a crown.avg
/bin/rm fort.12 fort.13

-1 - TITLE
FORMAT (20A4)

TITLE Title of the mdanal run for identification.

-2 - INTX , ICOR , IDIM , ISUB , NFI , NFF , KFORM
FORMAT (10T)
INTX Flag for the type of averaging.

internal coordinates averaging

position coordinates averaging

special dna helical parameter averaging

special dna sugar puckering averaging

md movie generation

normal mode movie generation (modes file is read on

unit 12)

Note: movie display software is not part of the
Amber package.

Il
U s WN K~ O

ICOR Flag for the calculation of correlation functions.

= 0 no correlation functions

correlation functions are calculated

= 2 only correlation functions are calculated. The output
from averaging is suppressed

= 3 only simple PAK cross correlation coefficient is
calculated

NOTE: for INTX.EQ.l .OR. INTX.GT.3 ICOR is ignored

Il
[

IDIM Flag to monitor dihedral transitions in case of
dihedral averaging.

1/30/113

MDANAL module Page 224

= 0 no monitoring of dihedral transitions
1 dihedral transitions are monitored

ISUB Flag to store sub averages.

= 0 the sub-averages are not stored
= 1 the sub-averages are stored

NFI Starting read unit for coordinates.
The default is 12.

NFF Final read unit for coordinates. If it is zero
the default is 12. The read unit is incremented
by one from nfi to nff and the coordinates are read
from different files.

NOTE: if intx.eq.5 nfi and nff would be the same

KFORM The Flag for the type of Molecular Topology input

= 0 BINARY FORM
= 1 FORMATTED FORM

-3 - NTR , NRIS , NRRC , NSKP
FORMAT (101)
NTR Flag to read either coordinates or sub-averages for
averaging.

= 1 coordinates will be read through units NFI to NFF
2 sub-averages are read through units NFI to NFF

NRIS The number of coordinate sets to be skipped for
every set to be used for averaging. The default is one.

NRRC not used
NSKP not used
-4 - NTB , BOX(1l) , BOX(2) , BOX(3) , BETA

FORMAT (I, 4F)
NTB Flag for periodic boundary conditions.

=-n periodicity is applied. box is truncated octahedron
(BETA = 90)

= 0 no periodicity is applied

=+n periodicity is applied. box is rectangular or monoclinic
depending on the value of BETA

1/30/113

MDANAL module Page 225

BOX(1..3) Lengths of the edges of the periodic box.

BETA Angle between the x- and z- axes of the box in degrees.
The y- axis is assumed to be orthogonal to the other
axes. (0 < BETA < 180)
-5 - NTQ , NTPI , NTPR , NTPL(1l) , NTPL(2) , NLIS
FORMAT (10T)
NTQ Flag for selecting an internal coordinate quantity Q

for averaging. If INTX .GT. 0 it is ignored.

bond lengths involving hydrogen atoms

bond lengths involving non-hydrogen atoms

bond angles involving hydrogen atoms

bond angle involving non-hydrogen atoms

hydrogen bonds within 2.5 angstrom

non-bonded distances involving given atom pairs
dihedral angles involving at least one hydrogen atoms
dihedral angles involving non-hydrogen atoms

I
0N U s WN

NTPI Flag for the type of input coordinates.

= 0 the coordinates are in binary form
= 1 the coordinates are in formatted form

NTPR Flag for printing the averaged quantity.
If INTX .eq. 1 the term "g values" means atom
in the following.

= 0 no results per q values are printed

= 1 results per q values are printed according to the
sequence

= 2 1in addition ordered per q value name and residue
name are printed

= 3 ordered per q value name and residue name following
the list of quantities given below

NTPL(1) Flag for plotting the averages.

= 0 no plotting

the means of g values are plotted

= 2 rms fluctuations per g value are plotted
if INTX .eq. 1 rms fluctuation per atom is plotted

= 3 1in addition the third root of the third moments of
the g values are plotted
if INTX .eq. 1 the rms fluctuations per atom having
atom name given in the next card are plotted

= 4 1in addition the fourth root of the fourth moments of
the g values are plotted

I
=

1/30/113

MDANAL module Page 226
NTPL(2) Same as NTPL(1l) for the energies.
If INTX .eq. 1 it is ignored.
NLIS The number of g values or atoms to be read below

over which the averages to be performed. If NLIS .eq. O
all are taken.

-6 - CUT , NAMA , NAMB
*%%xx% ONLY IF NTQ.EQ.6 .AND. INTX.EQ.Q ***x%

FORMAT (F, 2A)

CUT The cut off distance for choosing pair distances.

NAMA The graph name of atom a.

NAMB The graph name of atom b. If NAMB is blank then
NAMB = NAMA. The pair distances ab would be chosen for
averaging.

-7 - NTTR

%% ONLY IF INTX .EQ. 1 **#*%*%*
FORMAT (I)
NTTR Flag for least square fit of the coordinates.

= 0 The least square fit are not made for the coordinate
sets for performing the deviation analysis

1 The coordinate sets are translated and rotated to make
a best fit with respect to the first set. The atoms to
be included for the least square fit are input in GROUP
format. See group.doc.

-8 - LIS(I) , I =1 , NLIS
*%kx%% ONLY IF NLIS .GT. 0 **%x%*
FORMAT (10T)

LIS The list of g value or atom numbers over which the
average is to be performed.

-9 - DT , ITCOR , IFCOR , NCOR , NTPRC , IFFT

1/30/113

MDANAL module

DT

ITCOR

I
w N = o

IFCOR

NCOR

NTPRC

I
= W N EE o

IFFT

NPR2

Page 227

x ONLY IF ICOR .GT. 0 ***x*%
FORMAT (F,121)
The time interval between successive coordinate sets.

Flag for the type of derived quantity F(Q) to be used
for calculating the correlation functions.

F(Q) = 0Q

F(Q) = 0*Q

F(Q) = COS(Q)

F(Q) = (3*COS(Q)**2-1)/2

Flag for the type of correlation functions to be used.

<F(QI(0).F(QJ(T)>
<COS(F(QI(0)-F(QJ(T))>

The number of g values for which correlation functions
are to be calculated.

Flag to plot the cf related functions.
no plotting
the normalized correlation function(nfc) is plotted
in addition, the spectral density of nfc is plotted
in addition, log(abs(nfc)) functions are plotted
in addition, the integral of the nfc is plotted

Flag for the method of correlation function evaluation

by direct multiplication
by fast fourier transform

IFAV , NPR , NPR2 , NINT , NSDM
%% ONLY IF ICOR .GT. 0 **#**%*
FORMAT (5T)
Flag for subtracting the mean of g from the g values.

F(Q) = F(Q)
F(Q) F(Q-<0Q>)

The number of time intervals over which the nfc
functions are to be plotted. The default is the total
number of points (NS).

The number of points of the spectral density to be
plotted. The default is NPR/NSDM.

1/30/113

MDANAL module Page 228
NINT Number of points over which the nfc is integrated
The default is NPR.

NSDM The number of points of the spectral density that
are plotted as one point. The default is 1.

-11 - (IACOR(I) , JACOR(I)) , I =1 , NCOR
*%%%% ONLY IF ICOR .GT. 0 **%%%
FORMAT (10T)

IACOR(I) The g value sequence number for which correlation
function is to be calculated.

JACOR(I) If JACOR(I) .eq. IACOR(I)
auto correlation function is calculated.

If JACOR(I) .ne. IACOR(I)
cross correlation function is calculated.

NOTE: Five pairs are read per card

*%%%% ONLY IF INTX .EQ. 2 ***%*%*

- 12A - IBPGEN , NMIS , NBASP , NMISF , NFOSP
FORMAT (5T)
IBPGEN Flag for the base pair generation.

= 0 DNA is standard. This means that the DNA
bases are from the AMBER data base. The base
pairing will be generated automatically.

= 1 Non-standard DNA. The base pairing must be read
explicitly from the following four parameters:

NMIS The number of types of non-standard or modified
bases in the DNA molecule. If NMIS.LT.0 the program
will assume that you wish to replace the hard-wired
values for ADE,THY,CYT,GUA,URA and will specify them
in the input on line 11B. In this case the absolute
value of NMIS is assumed to be the total number of base
types in the molecule. This option is useful for
analysis of all atom runs since the hard-wired base
types are united atom.

NBASP The total number of base pairs in the DNA molecule

1/30/113

MDANAL module Page 229

if any nonstandard residues are present.

NMISF The number of types of non-standard or modified
phosphate residues in the DNA molecule.

NFOSP The total number of phosphate pairs in the DNA
molecule if any nonstandard residues are present.

- 12B - NAMBAS(I), NRA(I), (KRA(J,I), J =1, 20), I = 1, NMIS
%% ONLY IF ABS(NMIS).GT.(Q *****
FORMAT (A,211)

NAMBAS Residue name of the non-standard base.

NRA The number of atoms to be considered for finding the
mean plane of the base. If INTX .eq. 3, it is the number
of sugar atoms to be considered for puckering analysis.

KRA The relative position of the atoms in the residue.

The relative position of the Cl’ atom in the residue.

The relative position of the nitrogen in the base that
is bonded to the Cl’ atom specified above.

(Note that KRA is a list of all of the above so that
the number of elements that you must specify for KRA
is NRA+2 with the last two elements being the relative

positions of the Cl’ and the base nitrogen that it
is bound to.)

- 12Cc - NAMF(I) , NFRA(I) , KFRA(I) , I = 1, NMISF
%*%* ONLY IF NMISF.GT.Q **%*
FORMAT (A, 2T)

NAMF Residue name of the non-standard phosphate.
NFRA The number of atoms to be considered for finding

the helical twist. (it is always 1 since the twist

is taken as the angle between two phosphate pairs)
KFRA The relative position of the P atoms in the residue.

- 12D - KBASA(I) , KBASB(I) , I = 1, NBASP

1/30/113

MDANAL module

*%kx%% ONLY NBASP.GT.(***%%
FORMAT (21)

Residues in nucleotide molecules are numbered
sequentially starting at the 5’ end of the first
chain to the 3’ end, continuing from the 5’ end
of the second chain and ending at the 3’ end of
the second chain. This numbering scheme is used
regardless of the number of molecules in the
original model. All bases must be paired in this
way if nbasp .gt. 0.

The residue number of the first base in a pair.

The residue number of the second base in a pair.

Page 230

KFA

KFB

- KFA(I) , KFB(I) , I = 1,NFOSP
*%x%% ONLY IF NFOSP.GT.(*%*%%
FORMAT (21)

see note on residue numbering above.

The residue number of the first phosphate in a pair.

The residue number of the second phosphate in a pair

- 13A

NMIS

*%x%% ONLY IF INTX .EQ. 3 **%%%*
- NMIS
FORMAT (I)

The number of types of non-standard or modified
bases in the DNA molecule.

NAMBAS

NRA

- NAMBAS(I) , NRA(I) , (KRA(J,I),J=1,20) , I =1,
*%kx%% ONLY IF NMIS.GT.(Q **%%%
FORMAT (A, 22T)

Residue name of the non-standard base.

The number of atoms to be considered for finding the
mean plane of the base. If INTX .eq. 3, it is the number

1/30/113

MDANAL module Page 231

of sugar atoms to be considered for puckering analysis.

KRA The relative position of the atoms in the residue.

+++++ END OF INPUT +++++

1/30/113

CARNAL module Page 232

CARNAL

Wilson S. Ross
Department of Pharmaceutical Chemistry
University of California, San Francisco
ross@cgl.ucsf.edu
ross@ucsfcgl.bitnet

Usage:

carnal [-0] < analin > analout
carnal [-0] -i analin -o analout -p parm

-0 Overwrite output files.

CARNAL is a new coordinate analysis program that allows comparisons between multiple streams of
coordinates using a flexible command language. It has many of the capabilities of ANAL and
MDANAL, which it is intended to eventually replace. It also provides set-theoretic group specification,
cartesian vector oriented measurements, hbond analysis, output of distributions (including radial),
selection of coordinate sets from streams, interpretations of md streams in terms of windows and for-
mat conversion.

| |
| Stage 1 Stage 2 |
| (CARNAL) (You supply) |
| |
| stream(s) tables, |
| | Dynamics |----- > | coords |
[—— [T r—— >| static & | |
	- - - - - >	dynamic	--—-——-—- > numerical
	- - - - - >	analysis	analysis
	Minimization	-->	[=mmm e & display
J——— /o			
/			
parm file(s)/			
commands			
(analin)			
CONTENTS
Introduction
Input
Output

Analin intro
Overview of analin sections
Simple analin example
Analin Syntax Specification
More complex capabilities
HBOND

1/30/113

CARNAL module Page 233

DISTRIBUTION
Examples

INTRODUCTION

CARNAL input is essentially a programming language that lets one specify variables and perform
operations on them. The control input file for CARNAL is referred to as analin. The commands in
this file name the other input and output files as well as the measurements to be performed. These
commands are described in detail in the syntax specification and examples below. The —o file or stan-
dard output contains carnal’s interpretation of the analin input and summary data for the run.

Note that periodic boundary conditions are only applied to DISTRIBUTION DIST measurements.
{CHANGE this eventually} This is because of difficulties in measuring across 2 streams, but could be
enabled in the normal case of measuring within a stream.

Input

CARNAL takes as input one or more ‘““‘streams’ of input coordinates, which are lists of restart, mdcrd,
or Amber pdb format files. The formats can be mixed in a stream, but the files must have the same
number of atoms in the same order defined by the parm file for that stream. Each stream may have a
different parm file. The —p argument or the first parm file defined in analin is used as the default parm
file if no parm file is specified for a stream. At least one stream must be specified; the first one is used
as the default when a stream reference is expected. CARNAL will also load static coordinate sets for
comparison with the individual sets in the streams. It detects formats transparently. NOTE: periodic
boundary conditions are only applied to DISTRIBUTION DIST measurements; this is because of diffi-
culties in measuring across 2 streams, but could (and at some point will) be enabled in the normal case
of measuring within a stream.

Output

CARNAL writes as output tables of measurements (scalar measurements or 0/1 hydrogen bond occu-
pancies), distributions (including radial) and coordinate sets in mdcrd, restrt or pdb format. Summary
data is also written to the file named with the —o argument on the command line or standard output if
no —o argument is given.

ANALIN INTRODUCTION

This introduction is intended to give the feel of the analin language via an overview of the syntax and a
simple example. A complete syntax definition and more complex examples are given below.

Summary of Analin Sections

These are the required sections in the analin input file syntax. Comments follow ’!’s. In actual analin
files, a ’#’ at the beginning of a line turns it into a comment. There are 4 main sections, each begun by
a keyword in this order:

FILES IN ! name parm, coord/restrt/pdb files

FILES OUT ! name output tables, coord/restrt/pdb dumps
DECLARE ! describe items to be measured

OUTPUT ! direct declared stuff to output files

END ! end input, start execution: STOP may be

! substituted for debugging: program stops

1/30/113

CARNAL module Page 234

Things are declared in the first 3 sections and referenced in the last 2 sections. When something
is declared it is given an id for referencing it later.

A Simple Analin Example

Select some coord sets from mdcrd files and output them in pdb format:

FILES_IN

PARM pl ketop; ! keyword, id, filename

STREAM sl kecrd kfcrd; ! keyword, id, 2 filenames
FILES_ OUT

COORD ¢l /tmp/ke.p PDB; ! keyword, id, filename, output format
DECLARE

! no declarations for this simple case

OUTPUT

COORD cl sl SELECT (1 3 5 200);
! keyword, files_out id, files_in id:
! command to select sets 1, 3, 5, 200
END

In this case, coord sets 1, 3, 5, and 200 from the concatenated stream of mdcoord files kecrd and kfcrd
will be output to pdb files /tmp/ke.p.1 /tmp/ke.p.3 /tmp/ke.p.5 /tmp/ke.p.200.

Analin Syntax Specification

Notes

Aspects to be changed are indicated by "TCHANGE:’. Definitions must precede references: you cannot
refer to something defined later in the file. Characters reserved for explicit purposes are:

- . % () & | , v 2

A ’# as the first character of a line makes the line a comment. The format is entirely free, i.e. state-
ments can be spread across multiple lines with any indentation and with comment lines embedded.
Lines may not exceed 80 characters. In the syntax below, items in [] brackets are optional and items
within {} braces are descriptions rather than token-by-token matchings.

---FIRST SECTION = "FILES_IN"
Input coordinates may be MD crd dump, inpcrd/restrt or Amber output pdb format.

FILES_IN

PARM id filename;
Amber Parm file. Multiple parms can be defined; the 1st one (or one defined
by the [-p parm] argument) becomes the default for STREAMs that don’t
specify a parm.

1/30/113

CARNAL module

Page 235

STREAM strid [parmid]

STATIC

[NOBOX] [ATOM n] [WIN x y] filel file2 ... ;

At least 1 STREAM must be specified. STREAM files are read sequentially
at each step. If > 1 STREAMs are named, they can be compared at each step.
If no parmid is given, the first one defined is used by default. The NOBOX
and ATOM options allow CARNAL to handle certain discrepancies between
the parm topology and the input stream. If these options are inaccurate, syn-
chronization may be lost, resulting in garbage. ATOM is for reading in a
stream that has fewer atoms that the prmtop - such a stream might have been
created earlier using the ATOM option in the COORD section. All coordi-
nate sets in a stream must have the same number of atoms.

NOBOX
Mdecrd files for periodic simulations have box coordinates after each
coordinate set. Carnal automatically detects the presence of periodic
conditions from the parm topology and allows for reading the box coor-
dinates in mdcrd. However, previous to 4.1, constant volume runs did
not include the box coordinates. The NOBOX option allows carnal to
read old constant volume mdcrd files correctly.

ATOM n
Read only n atoms (more may be defined in the parm file). I.e. coordi-
nates for only n atoms are in the stream.

WIN
Means, "skip x sets, use y sets" repeatedly. This is for analysis of peri-
odic equilibration / data collection runs such as gibbs.

statid [parmid] filel file2 ...;

STATIC files are read at the beginning and remain in memory for comparison
with STREAM coordinates. Each static set in an id can be referenced by
'id%1°,

---SECOND SECTION = "FILES_OUT"

FILES_OUT

TABLE tabid filename ;

In the tables, there is one “logical row” per coordinate set measured, so a
given measurement over a trajectory occupies a column. For example, the Nth
item directed to the table (in the OUTPUT section, below) would form the
Nth numerical column and the Ith measurement of that value would be in the
Ith logical row. The logical rows are wrapped so that a row continues through
a series of lines in a single file beginning with key characters A’ °B’ 'C’ ...
Users will extract a page of columns by grepping for the key letter. If there is
demand, rows can instead be spread across multiple files (filename.O file-
name.l ...) or just tabbed continuously within a file (harder to read visually).
Thus, the format is:

A ml m2 m3 m4 cen |

1/30/113

CARNAL module Page 236

B mll ml2 ml3 ml4 cen | 1st coord set
C m21 m22 |

A ml m2 m3 m4 cen |

B mll ml2 ml3 ml4 cen | 2nd coord set
C m21 m22 |

where the measurements are m1l, m2, ... m22 extending over a logical line
consisting of lines ‘A’, ‘B’, and ‘C’.
COORD crdid file [APPEND] [BLANK] [format] ;
APPEND
Add to end of named file if it exists.
BLANK
Werite a blank line after each set.

Format symbols are ’PDB’ "RST’ and ’CRD’. The default format is CRD.

HBOND hbid base_file [TABLE] [LIST];
TABLE
Output table of occupancies in base_file.tab. This table has two sections.
The first part is a key that lists the possible hbonds in order. The format
is:

#1 (ADE 205’)—(HB 1H)..(ADE 201’)
#2 (ADE 205")—(HB 1H). (ADE 2N7)

The second part consists of a matrix of 0’s and 1’s. Each column is for a
given hbond pair according to the numbering in the key section, and
each row (line) is for a coordinate set. The format is ‘0’ if no hbond is
happening, ‘1’ if it is. The Unix ‘awk’ utility can be used to extract col-
umn(s) of interest for further occupancy analysis or plotting, e.g. “egrep
-v "# | awk *{print $2, $5, $8} base_file.tab” where the ‘egrep’ com-
mand strips out the key section and the ‘awk’ command selects the
columns of interest. Note that if there are too many columns for awk to
handle, the ‘per]’ utility may be needed.
LIST

Output list of per-hbond-per-set to base_file.lis for extensive analysis.
The format is:

1 (ADE 2N6)(THY 504)2.9307689.125721
2 (ADE 2N6)(THY 504)2.9578203.151730

where the 1st number is the number of the coordinate set (starting with
1), followed by donor, acceptor, distance and angle (in radians). Atoms
are specified by residue name, residue number, and atom name. (See
OUTPUT HBOND STAT for summary hbond info, including fraction of
occupancy.)

HBOND specifications are given in the OUTPUT section.

Summary info is printed to standard output.
CHANGE someday: at least one of {TABLE, LIST} must be given, and the

1/30/113

CARNAL module Page 237

OUTPUT HBOND statement is req‘d to do any hbond analysis.

DISTRIBUTION dbid filename [DAP][MIN];

DAP
Put number of intervals on 1st line.

MIN
For DIST option, below. For each ’solvent’ atom, write out min distance
to ’solute’ for the run (multiple lists separated by a’%’ are output if WIN
is chosen with DIST). This is to figure out which waters to keep in a sec-
ond pass dumping COORDs. List output goes to filename.min. See
Example #.

The definition of contents of the file is described in the OUTPUT section.

---THIRD SECTION = "DECLARE"

Each object is bound to a crd set; if not bound explicitly, the default is stream 0. Refer-
ences to that object inherit the binding of the object, except for within a GROUP state-
ment (GROUP (GROUP id)...). L.e. in general an optional [crdset] is not allowed after a
declared id is used (binding at reference rather than creation), for now.

‘Points’ can be atoms (specified by ‘number [crdset]” or ‘atom_name residue_number
[crdset]’) or centers of geometry or mass of groups of atoms (see GROUP definition
below). For example, “PLANE id 12 34 58;” specifies the plane formed by atoms 12,
34 and 58 in the default stream, and “PLANE id OD1 2 ND1 4 OD1 6;” specifies the
plane formed by atom name OD1 in residue 2, etc. “PLANE id gidl gid2 gid3;” speci-
fies the plane formed by the centers of geometry of three groups.

DECLARE

----Group is defined by set theoretic operations. Group attributes include center of
geometry or mass, moment of inertia, and radius of gyration.

GROUP id (((set OP set) OP set) ...) [crdset];
Where the nesting in parentheses determines the order of evaluation.

OP can be either ‘&’ or ‘I’
where &’ = intersection, ’I’ = union
and set can be any one of: { (ATOM numlist),
(ATOM [NAMEITYPE] namelist),
(RES numlist),
(RES NAME namelist),
(SOLUTE)
(GROUP namelist_of_groupids),
Iset }
In the (GROUP) set, the groups are OR’d together. The NAME and TYPE
options allow the use of ’?” as a wild card matching any single character.

Allowing expressions:

groupid%center
center of geometry - default if groupid is used as a point
groupid%cmass

1/30/113

CARNAL module Page 238

center of mass
groupid%momin

moment of inertia
groupid%radgyr

radius of gyration

AXIS id {2 points} ;

AXIS axidl 12
Atoms 1 -> 2 in stream O by default.

AXIS axidl 1 stlid 2 st2id ;
Atom 1 in stream/static stl -> atom 2 in stream/static st2.

AXIS axid2 grplid grp2id%cmass;
grpl center of geometry to grp2 center of mass: note that the groupids
may be the same or groups may be defined on different streams.

PLANE plid { 3 points or 2 axes } ;
A plane is treated as its normal vector where appropriate.

ANGLE angid { 3 points or 2 axes/planes };
Planes are interpreted as normal vectors.

TORSION tid { 4 points or 3 axes/planes };
Planes are interpreted as normal vectors.

TORSION tid BACKBONE [residuel [residue2] | [crdset] ;
Find all torsions involving backbone bonds (between Amber main chain
atoms), starting with residuel (default: 1st residue) and ending with residue2
(default: last residue). If first and last residues’ terminal backbone atoms are
bonded to each other, torsions involving them are included.

DIST dsid { 2 of: points, axes, planes };
Select 2 points, 2 axes, or point and axis or plane. [planes and axes are not
supported yet]

RMS rmsid [FIT] groupid ;

RMS rmsid [FIT] groupid streamid ;

RMS rmsid [FIT] groupid streamid refcrdid ;

RMS rmsid groupid prevrmsid ;
Using atoms in groupid, measure rms of one coordinate set to another. If FIT
is selected, position for minimum mass-weighted rms of the group, allowing
rmsid to be used for RMS measurement of other groups and to be used like a
stream for other measurements as well as to be output via a COORD state-
ment. The first and simplest case above uses groupid to compare the default
stream to its first set. The second case compares a named stream (rather than
the default) to its first set. The third case specifies both the stream and a ref-
erence set for comparison; this reference set could be a static set or another
stream. The fourth case measures the rms of a second group on a pair of sets
that were positioned by a previous RMS FIT statement. See OUTPUT TA-
BLE for instructions on obtaining per-residue and per-atom rms. Any num-
ber of any of these types of RMS measurements can be used.

PUCKER pukid NUCLEIC [streamid] [residue_nameslresidue_numbers] ;
PUCKER pukid number_of_points points ;
Measure pucker using algorithm of D. Cremer and J. A. Pople (JACS 96:6 pp

1/30/113

CARNAL module

Page 239

1354-1358, 1975). For the NUCLEIC options, the Altona and Sundaraling-
ham convention (JACS 94 pp 8205-8212, 1972 or p. 20 of Saenger’s "Princi-
ples of Nucleic Acid Structure", Springer-Verlag, 1983) is approximated by
adding 90 degrees to the phase angle, the puckers are always ordered accord-
ing to residue order in the parm file, and the standard atom names (O4°/01°,
C1’, C2’, C3’, C4’) are used to determine the points. (For a comparison of
different nucleic acid pucker conventions, see S. C. Harvey and M. Prab-
hakaran, JACS 108:20, pp 6128-6136, 1986.) In the general case (specifying
points explicitly), a ring of N points can be parameterized by N-3 alternating
amplitudes and phase angles. Note that the Cremer/Pople algorithm finds a
mean plane based on the assumption that successive points in the ring have
the same angle between them with respect to the center of geometry, so for
kinky rings this may not work.
PUCKER pukid NUCLEIC;
Measure pucker of all standard residues ("94 force field: G5,
G, G3, GN, efc.; 91 force field: GUA, efc.) in default stream
using standard atom names (04’/01°,C1’,C2°,C3’,C4’).
PUCKER pukid NUCLEIC streamid;
Same as above, but uses specific stream rather than default.
PUCKER pukid NUCLEIC GUA;
Measure pucker of all residues named *GUA’ using standard
atom names.
PUCKER pukid NUCLEIC 2,4,6,8 ;
Measure pucker of residues 2,4,6, and 8 using standard atom
names.
PUCKER pukid 501°2C1°2C2°2C3°2C4’ 2
Measure pucker of 5 points: O1’ (residue 2), C1° (residue 2),
etc.

---FOURTH SECTION = "OUTPUT"
Define what declares go to things defined in FILES_OUT.

OUTPUT

TABLE tbid { column_list } ;

At least one column must be specified. Columns are printed in their order in
the list. Column_list may include ids, classes of measurement (e.g. DIST)
which print in the order declared, MEAS which prints all scalar measure-
ments, or ALL which prints everything. AXIS ids result in vectors, PLANE
ids in normals, and GROUP ids default to center of geometry unless attributes
are specified, such as grpid%cmass. RMS ids default to the rms of the group,
while rmsid%residues and rmsid%atoms give per-residue and per-atom rms
respectively. For per-residue rms, the group must not have any partially-
included residues. If either per-residue or per-atom options are used, the
statistics are printed in the summary with the residue and atom names.

COORD crdid streamid

[SELECT (-i j k.l m-p q-)] [MOD h]

1/30/113

CARNAL module

Page 240

[AVERAGE] [ATOM n] [EXH20 m [GROUP gid]] [INH20O gid] ;

SELECT (-5 7 8,10 100-105 200-)
Select certain sets from the stream by order. Numbers are separated by
spaces or commas, and ‘-’ is used to indicate ranges. In this example,
select sets 1 through 5, then sets 7, 8, and 10, then sets 100 through 105,
then sets 200 through the end. Note that this option selects files for out-
put only, and does not affect measurements on the stream, as opposed to
the STREAM WIN option, which pre-selects sets for all the other com-
mands.

MOD h
Select every h’th set from the stream. Note that this option selects files
for output only, and does not affect measurements on the stream, as
opposed to the STREAM WIN option, which pre-selects sets for all the
other commands.

AVERAGE
Average the coordinates. Not compatible with EXH20 or INH20, but ok
with ATOM. Produces a single set, so PDB or RST format is advised for
the corresponding FILES_OUT COORD declaration. Suggested that this
be applied to an RMS FIT streamid so that the area of interest has mini-
mal distortion from drift or pressure scaling of the box.

ATOM n
Output only the first n atoms. ATOM, INH20 and EXH2O are mutually
exclusive options.

EXH20 m [GROUP gid]
Omit all but m waters from the set, either those closest to the non-
waters, or those closest to the atoms specified by GROUP. Distance is
measured from water oxygen. Waters are printed in order of closeness to
the solute, i.e. the order varies from set to set, so identity-based dynamic
graphics smoothing schemes will fail. Cannot be used with INH20O.

INH20 gid
Omit all but waters with OW in group gid from the set, where gid con-
tains only OWs. This group is intended to be built with the output of a
previous pass using DISTRIBUTION MIN which informs the user how
close each water came to the area of interest during the run. See Exam-
ple #.

HBOND hbid [DONOR g1] [ACCEPTOR g2]

[DISTANCE x] [ANGLE y] [STATS];
DONOR and ACCEPTOR indicate group ids for searching for the appropri-
ate atoms. The default for either is all atoms. A single group id may be given
in place of separate definitions.
DISTANCE
Cutoff distance in angstroms between the heavy atoms: default is 4.0.
ANGLE
Cutoff H-donor-acceptor angle in degrees (0 is linear): default 1 radian
"= 60 degrees.
STATS
Directs printing of per-hbond summaries to standard output. The format
is:

1/30/113

CARNAL module Page 241

HBOND h1 stats:
#19 (ADE 2 N6)_(ADE 2 HN6A)..(THY 504) % 64.400000
distance avg: 2.909575 max 2.961379 min 0.000000
angle(deg) avg: 7.241544 max 15.219878 min 0.000000

where the # refers to the column of file.tab and the *64.400000° gives the
percentage of occupancy. The other statistics are only for the “occu-
pied” states.

DISTRIBUTION dsid

{ RAW | min max nboxes [WIN] }

{ measid | DIST groupl [SELF] [group2 [ALL]] [NORM] };
Distribution output can be either RAW (a long line of ascii floating point
numbers per coordinate set) or binned and normalized. If the latter, the WIN-
dow option causes the distribution for each n sets supplied by the STREAM
to be written, with a *%’ line to separate each window. RAW is the recom-
mended option for large data sets, since the proper range and number of bins
are hard to guess at: the rdis program can be used on the raw output to
quickly try various min/max/nboxes numbers on the raw file. Note, however,
that measurements including many terms can generate files larger than the
original trajectory, so the RAW option may not be appropriate in such cases.
For example, when measuring O-O distributions in a system of N waters,
there are 9N numbers per coordinate set, but N(N-1)/2 distances to write out
if RAW is used. For N=1000 this amounts to a RAW file 55 times larger than
the trajectory.

Either an id for a scalar measurement or a radial distance distribution (DIST)
may be specified. In the latter case, one or two groups can be specified. A
single group may be given followed by the SELF option, in which case all
intra-group distances are used (this would be appropriate for e.g. water O-O);
otherwise, two groups are required. When just two groups are given (without
SELF or ALL options), the groups are treated as “‘solute” and ‘“‘solvent™
respectively: for each ““solvent” atom, the distance to the closest ‘“‘solute”
atom is applied. The SELF option includes the intra distances of the first
group, and the ALL option includes all groupl-group2 distances rather than
the “solvent™ to closest ““solute” atom. Note that when two groups overlap,
distances of 0 would be obtained for the atoms that are in both groups, so
groups should be disjunct. SELF and ALL should make it possible to mea-
sure various forms of intra-solvent distributions (see examples, below). The
MIN option from the FILES_OUT section above is only valid for the plain,
two-group mode.

Volumetric NORMalization is optional when radial DISTribution is selected.
This only makes sense when the solute group is unconnected, since the nor-
malization is done by dividing the count for each interval by the volume of a
spherical shell having radii equal to the shell boundaries.

The output format is: “bin_center value smoothed_value integral.”

Examples

======Simple Coordinate Averaging

1/30/113

CARNAL module Page 242

#Simple Coordinate Averaging
FILES_ IN

PARM pl ketop;

STREAM sl kecrd kfcrd;

keyword, id, filename
keyword, id, 2 filenames

[y—

FILES_ OUT
COORD cl /tmp/ke.p PDB; ! keyword, id, filename, output format
DECLARE
! no declarations for this simple case
OUTPUT

COORD cl1 sl AVERAGE;
keyword, files out id, files in id:
command to average sets

[y—

======Simple Distance, Angle, Torsion Measurements
Note the semicolons terminating each statement!

Plain measurements involving points (atoms, centers of mass)
FILES_ IN
PARM pl prm.top;
STREAM sl al.trj a2.trj a3.trj;
FILES_ OUT
TABLE tabl meas.tab;
DECLARE

First, some measurements using atoms only: format is:
FUNC_NAME ID atom_specs ;

each atom spec can be either:
ATNAME RESNUM

or
ATNUM

oW HHHHH

DIST distl 01’ 2 01’ 7;
ANGLE angl 2 12 13;
TORSION torl Cl 4 C2 4 C3 4 C4 4;

A special case for torsions:

H* F W

TORSION tor2 BACKBONE;
~ find all torsions consisting completely of
main chain atoms

Now some more geometrical stuff: the angle between
the normal vectors of two planes:

HH ¥ W H W

PLANE plal Cl1 4 C2 4 C3 4;
PLANE pla2z Cl1 5 C2 5 C3 5;
ANGLE ang2 plal plaz2;

1/30/113

CARNAL module Page 243

Now some measurements using composite points:

format is the same, except for atom specs.

First we’ll define a group consisting of the non-waters,
and a group consisting of atoms in 3 numerically adjacent
residues:

oW HHHRH

GROUP gl (SOLUTE);
GROUP g2 (RES 5,6,7);

And now to measure the distance between the centers of
mass of each group to see how that pair of residues
fluctuates from the center:

H* oW HH

DIST dist2 gl%cmass g2%cmass ;

Now let’s define 2 more residue-based groups:

H* ¥ W

GROUP g3 (RES 21,22,23);
GROUP g4 (RES 44,45,46);

And we'’ll measure the angular fluctuations of the 3
residue-based centers of mass:
ANGLE ang3 g2%cmass g3%cmass g4%cmass ;

H* H W

OUTPUT

Now direct all the measurements to the table defined above

MEAS refers to all scalar measurements; each 1 will be a

column in the order defined (distl angl torl tor2 dist2 ang2).
Alternatively, the ids could be given explicitly in any order.
#

TABLE tabl MEAS;

======RMS deviation

You want a measurement of the minimum RMS deviation of a group of atoms as a mea-
sure of how disordered some structures are relative to another structure. Given the best
fit on that group of atoms, you also want to know how much another subgroup differs
and how much all the atoms outside the fit group differ. You also want to save the fit
structures for viewing.

#
RMS example: fit central 8 bases of a G4 DNA quadruplex
#
FILES IN
PARM pl p524.top;
STREAM sl
sm4 .pdb

1/30/113

CARNAL module Page 244

sm9.pdb
sml7.pdb;

STATIC ref set sm3.rst;
tonnnnT this file will be used as one
reference set for the comparison;
no pdb file around, but that’s ok
FILES_ OUT

TABLE tbl sm.rms;
"oonnn this is a table for the per-set rms values

COORD crd fit.p PDB;
~"” save some structure(s) in PDB format
oo name of file
DECLARE
#
Now let’s get down to business.
Declare a group of atoms to fit on - all the
non-sugars in the central 8 GUAs:
#

GROUP grpl ((ATOM NAME N9 C8 H8 N7 C5 C6 06 N1 H1

C2 N2 HN2A HN2B N3 C4)
& (RES 4,6, 13,15, 22,24, 31,33));

"~ boolean for "all of the atom names in
the 1lst part that occur in the following
residue numbers"
#
RMS fit the structures in the stream to the reference
set using the group of atoms just defined (fitting is
mass-weighted). This creates a new thing that can be
treated as a stream.
#

RMS fitl FIT grpl sl ref set;
AAAAAAA reference structure id -
if not given, the first
structure in the stream
would be used; or this id
could be for a different
stream instead of the static
coord set used here
stream id - what to fit

group of atoms to use for fitting
fit (position) the stream set to minimize rms
°°7 rfitl’ is the new, streamlike thing

PNPNIN

Specify the group of atoms to measure a secondary
deviation - the terminal bases on each strand, w/out
the sugars:

HFHRHWBRHFHRHBRHFHRHBRHFHRHRHFHRHRH

GROUP g2 ((RES 2,8, 11,17, 20,26, 29,35) &
(ATOM NAME N9 C8 H8 N7 C5 C6 06 N1 H1

1/30/113

CARNAL module Page 245

C2 N2 HN2A HN2B N3 C4));

Measure the RMS on that group resulting from the fit
of the other bases, i.e. between the target structure
and the new, fitted structure. Just measuring this
time, not creating a new set.

HH ¥ W H W

RMS fit2 g2 f£fitl ref set;

Let’s see what that fit does for _all the atoms outside
of the fit, not just the end bases.

Specify the group of all atoms not in the original group
used for the fitting:

¥ W H W

GROUP g3 (!grpl);

#
Measure the RMS of that group on the fitted structures
as before.
#
RMS fit3 g3 £fitl ref set;
#
Just for fun, create a new fitted set using the 1lst group
but using the 1lst set in the stream as reference.
#
RMS fit4 FIT grpl sl;
7 Jjust specifying the stream with no
reference defaults the reference to
the 1lst set in the stream
"~"" use our "central bases" group again
~"7 FIT the thing
°""" name of a new, stream-like thing starting with the
second crd set in the stream
#
OUTPUT
#
Write the RMS values to the table:
#

TABLE tbl fitl fit2 fit3 fit4;
cocto ottt mmtt 7777 output the measured rms
values as columns in the
table declared as a file
above

"7 to table ’tbl’

Average the the structures fitted using the 1lst group
on the reference set and print them to the coordinate
file defined above. Perhaps we will then energy min
this structure and claim it means something.

FHRWBHFHFRHRHFHRHHHR®

1/30/113

CARNAL module Page 246

COORD cl fitl AVERAGE;

======Coordinate Selection: waters: use of INH20 with DISTRIBUTION MIN

You want coordinate dump with selected waters. Not the closest waters at each step:
you _know_exactly_ which waters you want: the same ones in every set, maybe so that
when you smooth the trajectory, the Nth water won’t change its identity at each step.
This is a 2-pass procedure: first you need to get a list of the waters: you need the atom
number of the OW in each water. If you want those waters to be all those that came
within a given distance of the solute, have I got an option for you. The thing to have is,
for each water, the closest it came to whatever you want to call the solute. DISTRIBU-
TION MIN will give you a list of atom number, distance pairs that you can sort to gen-
erate the list of favored waters you need. With this list of OW atom numbers, you can
define a group which, in another pass, can be used to filter waters.

use of INH20 with DISTRIBUTION MIN - 1lst pass
FILES IN

PARM pl prm.top;

STREAM sl al.trj a2.trj a3.trj;

FILES_ OUT

DISTRIBUTION dl file MIN;
“this is the key: creates "file.min"
DECLARE

GROUP gl (SOLUTE);
GROUP g2 (ATOM TYPE OW);
“” have to use OW
OUTPUT
DISTRIBUTION dl 0.0 10.0 10 DIST gl g2;
AAAAAAAAAAA you’'ll also get the
net curve; RAW ok
this is the 2nd key
order is solute then
solvent

PPNPNPN

PPNPNPN

B3k $h % H

ND

--Now the critical step: filtering the water. First we use ’awk’ to see what waters we
want to keep, e.g.:

% awk ’$2 < 3.0 {print $1}’ file.min | wc -1

This tells you how many water oxygens came within the cutoff (3.0 in this example).
Choose a cutoff such that the resulting list of OW atoms is the right size for you and:

% awk '$2 < 3.0 {print $1}’ file.min > temp

Now you need to take the list of OWs in the temp file and include it in a GROUP

1/30/113

CARNAL module Page 247

ATOM statement as in the following example in order to select the waters into a coordi-
nate dump.

use of INH20 with DISTRIBUTION MIN - 2nd pass
FILES_ IN
PARM pl prm.top;
STREAM sl al.trj a2.trj a3.trj;
FILES_ OUT
COORD cl filtered.trj;
DECLARE
GROUP gl (ATOM 2,11,26,29);
TonnnnnmnT the OW atom numbers of your choice
OUTPUT
COORD cl INH20 gl;
END

======DISTRIBUTION DIST (radial distance distributions) examples

DISTRIBUTION EXAMPLE: ONE GROUP to itSELF (OW-OW)
FILES_ IN

PARM pl prmtop;

STREAM sl crd;

FILES_OUT

DISTRIBUTION dl xdb ;
DECLARE

GROUP gl (ATOM TYPE OW);
OUTPUT

DISTRIBUTION dl RAW DIST gl SELF;
" use all intra-group distances
group id from DECLARE GROUP
" distance macro
"~ dump all distances to file for use w/ rdis
program (i.e. don’t bin measurements or
output bins)
©id
For each ’'solvent’ group atom, the nearest ’'solute’ atom
is found and binned if it satisfies the min, max criterion.

B o3k 3 3 3% W R H W

ND

DISTRIBUTION EXAMPLE: TWO GROUPS using closest atom in 1lst to
each of 2nd
FILES IN
PARM pl prmtop;
STREAM sl crd;
FILES OUT
DISTRIBUTION dl xdb ;
DECLARE
GROUP gl (RES NAME ADE);

1/30/113

CARNAL module Page 248

GROUP g2 (RES NAME THY);
OUTPUT
DISTRIBUTION dl RAW DIST gl g2 ;

"~ 2nd group is the ’‘solvent’

~ 1lst group is the ’'solute’

~ distance macro

"~ dump all distances to file (don’t bin)

©id

For each ’'solvent’ group atom, the nearest ’'solute’ atom

is found and binned if it satisfies the min, max criterion.
END

DISTRIBUTION EXAMPLE: TWO GROUPS using all inter-group pairs
FILES_ IN
PARM pl prmtop;
STREAM sl crd;
FILES_ OUT
DISTRIBUTION dl xdb ;
DECLARE
GROUP gl (RES NAME ADE);
GROUP g2 (RES NAME THY);
OUTPUT
DISTRIBUTION dl RAW DIST gl g2 ALL;

consider all groupl-group2
interactions
~ 2nd group id from DECLARE GROUP
" 1st group id from DECLARE GROUP
~ distance macro
~ dump all distances to file (don’'t bin)
©id
END
DISTRIBUTION EXAMPLE: TWO GROUPS using all groupl intra pairs and
all inter groupl-group2 pairs.
This case: all distances between water O and
other O (including water) in a water/octanol
solution.
FILES_ IN
PARM pl prmtop;
STREAM sl crd;
FILES_ OUT
DISTRIBUTION dl xdb ;
DECLARE
GROUP gl (ATOM NAME OW);
"oonnonnnnm all water oxygens
GROUP g2 (ATOM TYPE OH);
"oonnonnnnm all octanol oxygens
OUTPUT

DISTRIBUTION dl RAW DIST gl SELF g2 ALL;

1/30/113

CARNAL module Page 249

~ consider all octanol-water
distances too

group id from DECLARE GROUP
(octanol 0)

~ consider all water-water distances
group id from DECLARE GROUP (water O)
" distance macro

~ dump all distances to file (don’'t bin)

~id

END

======HBOND examples

You want a occupancies for all possible hbonds at each step. This file will consist of a
line for each coordinate set in the stream with a ‘0’ or ‘1’ followed by a space for each
possible hbond. You also want the percentage occupancy of each hbond over the run,
and the average distance and angle when occupied. And while you’re at it, you want to
print the distance and angle of each possible hbond.

You also want to specify the maximum distance and angle that qualify an hbond.
The percentages and averages are written to the main output at the end of the run.

FILES IN
PARM pl hbtop;
STREAM sl hbmd;
FILES OUT
HBOND hl xhb TABLE LIST;

"~ write a list of distances/angles
to "xhb.lis"

" write occupancies to "xhb.tab"

"~ use "xhb" as the basis for filenames

#

#

DECLARE

OUTPUT

HBOND hl DISTANCE 3.3 ANGLE 20.0 STATS;

~ print the averages

of the occupied cases
limit the angle;

default 1 radian "= 60 degrees
limit the distance between heavy atoms;

default 4 Angstroms

END

Perhaps you want to specify the donor and acceptor groups, if only to limit the number
of columns in the table. This time, we’ll also just use the default criteria for hbonds.

1/30/113

CARNAL module Page 250

HBOND ANALYSIS EXAMPLE: USING GROUPS FOR DONOR/ACCEPTOR
FILES IN
PARM pl hbtop;
STREAM sl hbmd;
FILES OUT
HBOND hl xhb TABLE LIST;
DECLARE
DECLARE
GROUP gl (ATOM TYPE N2 NA);
GROUP g2 (ATOM TYPE NC O);
OUTPUT
HBOND hl DONOR gl ACCEPTOR g2 STATS;
END

====== Case history 1: a geometrical example

A long, relatively stiff molecule was bending: how to characterize it? One approach
short of measuring the curvature (which carnal doesn’t do yet) would be to define
groups for different segments, then measure angles between vectors involving centers
of mass or geometry; e.g. if this is the molecule:

AAAAA~AA AAAAAA AAAAAA

or

AAAAAA AAAAAA AAAAAA AAAAA

AXIS axl grpl%cmass grp2%cmass;
AXIS ax2 grp3%cmass grpé4scmass;
ANGLE al axl ax2;

==== references

Batschelet, Edward. Circular statistics in Biology (1981) Academic Press Inc., New York, NY
Kabsch, (1976) Acta Cryst. A32,922-923 and (1978) Acta Cryst. A34, 827-828.

1/30/113

NMODE module Page 251

NMODE

Usage:

nmode [-O0] -i nmdin -o nmdout -c inpcrd -p prmtop -r restrt
-ref refc -v vecs -1 lmode -t tstate -e expfile

-0: Overwrite output files if they exist.

This program performs molecular mechanics calculations on proteins and nucleic acids, using
first and second derivative information to find local minima, transition states, and to perform vibra-
tional analyses. It is designed to read the prmfop and inpcrd files from the Amber suite of programs.
There are accompanying programs nmanal (normal mode analysis) and /manal (Langevin mode analy-
sis) that use the output of these programs to compute molecular fluctuations and time correlation func-
tions. Nmode was originally written at the University of California, Davis, by D.T. Nguyen and D.A.
Case, based in part on code in the Amber 2.0 package. Major revisions were made at the Research
Institute of Scripps Clinic by J. Kottalam and D.A. Case. M. Pique has provided valuable advice and
help in porting it to many different machines.

References. The second derivative routines are based on expressions used in the Consistent
Force Field programs; !> similar information is given by K.J. Miller, et al., !¢ although these expres-
sions were not actually used in writing this code. The code also contains routines to search for transi-
tion state, starting (generally) from a minimum. This procedure uses a modification of the procedure
of Cerjan and Miller !7 as described elsewhere. !® Langevin modes are analogous to normal modes,
but in the presence of a viscous coupling to a continuum solvent. The basic ideas are presented by
Lamm and Szabo, !° and were implemented in the Amber environment by us. 20

General description: This program performs five tasks, depending on the value of the input
variable ntrun (see below):

(1) Perform a normal mode analysis from starting coordinates. Requires an input structure that
has already been minimized, from process (4), below, or by some other method. In addition to
the computation of normal mode frequencies, thermodynamic parameters are calculated.

(2) Search for transition state, starting (generally) from a minimum. See the references above for
a detailed description of the method.

15 S R. Niketic and K. Rasmussen, The Consistent Force Field: A Documentation, Springer-Verlag, 1977.
16 R .J. Hinde and J. Anderson, J. Comput. Chem. 1989, 10, 63.

17¢C. Cerjan and W.H. Miller, J. Chem. Phys. 1981, 75, 2800.

BDT. Nguyen and D.A. Case, J. Phys. Chem., 1985, 89, 4020.

19G. Lamm and A. Szabo, J. Chem. Phys. 1986, 85, 7334.

20 J. Kottalam and D.A. Case, Biopolymers 1990, 29, 1409-1421.

1/30/113

NMODE module Page 252

3)

“)

)

Perform a conjugate gradient minimization from the starting coordinates. This routine uses an
IMSL library routine for this purpose, which is not supplied with this program. Persons who
do not have access to the IMSL library should probably use the AMBER "min" program to
carry out conjugate gradient minimizations. (Compile min in the double precision version for
best convergence.)

Does a Newton-Raphson minimization from starting coordinates. A constant (tlamba) is
added to the diagonal elements of the Hessian matrix to make it positive definite. Tlamba is
chosen in a manner such that the step is always downhill in all directions. Whenever the
change in energy is > emx or the rms of step length is > smx, the step length is scaled back
repeatedly until the above two conditions are satisfied. Note that this routine will not converge
to a transition state.

Perform a langevin mode calculation, starting from a minimized structure. This option is simi-
lar to (1), but includes the viscous effects of a solvent in the calculation.

Input files for this program are the same as for the regular AMBER minimization and molecular
dynamics programs, with the exception of File 5, whose parameters are given below. The defaults
have been carefully selected, so that for most purposes, few of them need to be changed. See the sam-
ple runs for more information.

Files used in the program:

nmdin : control input for the run

nmdout : standard output file for print and error messages
prmtop : parameter file as output by the AMBER program parm
inpcrd : starting coordinates

refc : input coordinates for constraints

restrt : output coordinates at end of minimization

prlist : file for reading or storing the non-bonded pair list
vecs : file containing output normal mode frequencies and eigenvectors
tstate : output coordinates at a transition state

expfile: file to read exposed surface area for atoms

lmode : file to write Langevin modes

Input found on nmdin: You can use as many title cards as you want, followed by the namelist
&data, which contains the following variables.

General flags describing the calculation

ntrun

ibelly

: do normal mode analysis (default)

: search for transition states

: do conjugate gradient minimization
: do Newton-Raphson minimization

: do Langevin mode analysis

—_— B W =

: some atoms are to be held fixed (default=0)

1/30/113

NMODE module

icons
maxcyc
drms
nvect
nsave
nprint

ilevel

ivform

ntx

ntxo

cut
scnb
scee
dielc
idiel
iprr

iprw

SmXx
€mx

alpha

bdwnhl

Page 253

1: do constrained minimization to initial coordinates specified in refc. (default=0)
max. number of cycles for minimization (default=100)

rms gradient to stop minimization (default=1.e-5)

number of vectors for normal mode analysis (default=0)

for every nsave steps the coordinates are saved. (default=20)

every nprint-th step the energy will be printed

if .ne. 0, then adjust second derivative matrix to put rotation and translation vectors to
a high frequency; this can be useful if you want to perform a normal mode analysis
from a not-completely-minimized structure, so that rotations and translations don’t
mix with the low-lying modes (default=0).

0 if the normal mode eigenvectors are to be written out in unformattted form; 1 to use
the formatted option (default).

0 if the input coordinates are to be read in unformattted form; 1 to use the formatted
option (default).

0 if the output (restart) coordinates are to be written out in unformattted form; 1 to
use the formatted option (default).

Control of certain force field parameters

radius for non-bonded cutoff (default=99.)

1-4 nonbonded scale factor (default=2.0)

1-4 electrostatic scale factor (default=2.0)

dielectric constant (default=1.0)

0 for r**2 dielectric dependence (default); 1 for constant dielectric.
1: read in a non-bonded pair list from prlist; (default = 0)

1: write out non-bonded pair list to prlist; (default = 0)

control of Newton-Raphson and transition-state searches

maximum rms step length (default = 0.08)
maximum energy change per step (default =0.3)

scale factor for step length (default = 0.8) (See Nguyen and Case paper for descrip-
tion of smx, emx, and alpha.)

constant to determine tlamba, the value to be subtracted from the diagonal elements
of Hessian matrix for a downhill step. tlamba is chosen as min ((lowest eigenvalue -
bdwnhl) , 0.00d0). (default bdwnhl =0.25)

1/30/113

NMODE module

ndiag
dfpred

eta

i0seen

hrmax

istart

iflag

ivect

isdir

idir
isw
hnot
buphl

Page 254

for every ndiag steps, the matrix is diagonalized to calculate tlamba, when ntrun=4

arough estimate of the expected reduction in energy for the initial step (only for ntrun
=3). (default =0.01 kcal/mol)

parameters for running Langevin modes (set ntrun = 5)

viscosity in centipoise

0: Stokes Law used for hydrodynamic interaction
1: Oseen interaction included
2: Rotne-Prager correction included

hydrodynamic radius for the atom with largest area exposed to solvent. If a file

named ’expfile’ is present, then the relative exposed areas are read from that file as a
namelist

namelist /exposure/ expr(natom)

If ’expfile’ does not exist, then all atoms are assigned a hydrodynamic radius of
hrmax.

parameters for transition state search (when ntrun = 2)

0: new calc. (default)
1: restart calc.

0: search for transition state then minimum (default)
1: search for minimum from a transition state
-1: search for a transition state, then stop

no. of eigenvectors wanted (default=2) (ivect has to be >=isdir)

eigenvector along which search for transition state is to be made. Note that transla-
tions and rotations are removed from the Hessian, so this number refers to the order-
ing of the "true" vibrational normal modes. (default=1)

search direction: = 1 along isdir direction (default); = -1 opposite isdir direction
no. of steps before switching to the lowest mode (default=40)

initial step length (default=0.1 Ang.)

switch to Newton-Raphson step when lowest eigenvalue is less than this for uphill
walk. (default=-0.1)

1/30/113

NMODE module Page 255

Cards 3 group cards for the parts of the molecule that move, if ibelly.ne.0. See group docu-
mentation for format.

Cards 4 group cards for the part of the molecule to be constrained, along with the constraint
weights, if icons.ne.0. See group documentation of format.

1/30/113

NMANAL module Page 256

NMANAL

Usage:

nmanal [-0] -i nmdin -o nmdout -p prmtop -v vecs -r rvecs

-0 Overwrite output files if they exist.

This is a general routine to do vibrational analysis by projecting cartesian normal mode eigen-
vectors (generated by the nmode program) onto internal coordinates or onto "rigid groups." For each
internal coordinate, the program will determine the projection of each normal mode onto that coordi-
nate, and the fraction of the total potential energy change along the normal mode that is contributed by
that internal coordinate (the "potential energy distribution" for each mode.) You can also sum over all
modes to obtain the rms thermal fluctuations for any particular internal coordinate.

The program can also compute the rms thermal fluctuations of atoms in a cartesian coordinate
frame, and will compute time correlation functions and fluctuations of internal coordinates.

The original code was written by D. T. Nguyen and D. A. Case at U. C. Davis, 1985. The RMS
analysis added by Barbara Rudolph. Capabilities for time correlation functions were added by J. Kot-
talam at Scripps Clinic. Responsibility for the final versions of the codes (and for any bugs) rests with
Dave Case.

Files used in the program:

nmdin : control input for the run, described below.
nmdout : standard output file for print and error messages
prmtop : formatted parameter file

vecs : formatted file containing output normal mode

frequencies and eigenvectors. This file is generated
by the program nmode.

rvecs : formatted file containing the reference eigenvectors
and associated frequencies

Input found on nmdin:
Card 1: Title of the run

Cards 2: namelist /data/, which contains the following parameters:

ntrun Values of ntrun from —1 to 3 are used to analyze modes in terms of internal coordi-
nates (if ipro = I), to compute thermal fluctuations in internal coordinates (if ifluc =
1), or to compute time correlation and cross-correlation functions (if ntrun = -I).
Options 4 and 5 are present only for historical reasons (although the code might be a
good starting point for some interesting calculations), and options 6 to 8 carry out
some specialized tasks: (default=1)

1/30/113

NMANAL module Page 257

nvect

ivform

ieff

pecut

ibelly
ibeg
iend
ifluc
ipro
bose

natom
ihsful

tmax

tintvl

=-1 project eigenvectors onto those internal coordinates read in on subsequent cards
(labelled "3c", below).

= 0 project eigenvectors onto bonds only

= 1 project eigenvectors onto all internal coordinates

=2 " " " angles and dihedral angles

=3 " " " dihedral angles only

= 4 project eigenvectors onto "dynamics groups"

= 5 project eigenvectors of the system(’system vectors’) onto reference eigenvectors.
(This is a fairly specialized option, and you will probably have to look at the code to
see what you really get. It has rarely been used.)

= 6 just calculate rms fluctuations in cartesian coordinates.

=7 compute dipole-dipole correlation functions. In this case, prmtop is not read, and
the &data namelist must be followed by cards that have two integers per card (free
format), giving the atom numbers for each pair for which the correlation functions are
desired. See subroutine "corf" for details of the calculational procedure.

= § project MD snapshots onto normal mode directions

= number of eigenvectors in file vecs to be read in (default=50)

= 0 if the input vectors are in unformatted form
= 1 for input vectors in formatted form (default)

= 0 use true frequencies (default)
= 1 use effective frequencies (not implemented!)

cutoff value for printing out projections: print will occur if the estimated contribution
of an internal coordinate to the total potential energy distribution along this mode
exceed pcut. (default =0.02)

= 0 (default) no belly
=1 belly calculation

first eigenvector to be analyzed (default = 7)
last eigenvector to be analyzed (default = 50)

=0 don’t do the rms internal crds. fluctuation(default)
= 1 do the rms internal crds. fluctuation for the internal coordinates selected by the
"ntrun" variable

=0 don’t print out the projections onto internal crds.
= 1 print out the projections onto int. crds (default)

true. if quantum (Bose) statistics are to be used in populating the modes; .false.
(default) if classical (Boltzmann) statistics are to be used.

number of atoms; only needed if ntrun=7 or 8

= 0 if dipole-dipole correlations do not include contributions from distance fluctua-
tions

=1 (default) if both distance and angle fluctuations are to be included in dipole-dipole
correlations.

maximum value for time correlation functions if ntrun = 7. Default is 0.0, i.e. no time
correlations will be carried out.

interval for time correlation functions (default = 1.0).

1/30/113

NMANAL module Page 258

first

last

iskip

nrgrp
nrvec

nrat

iat

jat

imov

Cards 3a

Cards 3b

Cards 3c

The following are only used if ntrun=_8:

first snapshot from MD simulation be be projected onto normal mode directions, when
ntrun = 8. Default = 1.

last snapshot to be projected. Default = 9999.
every iksip-th snapshot will be projected. Default=1.

The following are only used if ntrun=5:

number of rigid groups (default = 0)

number of reference eigenvectors to be read in from file "rvecs" (only if ntrun=5;
default=0)

number of atoms in reference system (default=0)

first atom number of the part of the system to be excised and compared to reference
system (only if ntrun = 5; default=1)

last atom number of the part of the system to be excised (only if ntrun = 5; default =
natom)

flag to rotate/translate eigenvectors of system and reference to principal axes. This
essentially decouples translation and rotation of the excised part of the system as a
rigid body from the rest of the vibrational motion (only if ntrun=5, default=0).

group cards for the parts of the molecule that move, only if ibelly.ne.0. See group
documentation for format. This card is not needed when ibelly = 0.

group cards for subdividing the molecule into rigid groups (if ntrun=4). See group
documentation for format. Each rigid group will have its own set of cards 3b.

(if ntrun .eq. -1) Quantities for which time correlation functions are to be calculated.
These quantities are of the form of internal coordinates. All input is free format,
which means that you must enter all numbers -- blanks are ignored.

TYPE, IAT, JAT, KAT, LAT
INTNAME = identifier for this internal coordinate (character*8)
IAT, JAT, KAT and LAT are atom numbers. Set LAT to
zero for bonds and angle, KAT to zero for bonds. Repeat this card
for as many internal coordinates as you are interested in, up the
the value of MAXINT specified in the "sizes.h" header file.

Input is terminated when the end-of-file is reached.

1/30/113

LMANAL module Page 259

LMANAL
Usage:
lmanal [-0] -i lmdin -o lmdout -c inpcrd -1 lmode
-0 Overwrite output files if they exist.

This program will compute time correlation functions from Langevin modes. Note that since the
time-independent aspects of the molecular normal mode description are independent of solvent viscos-
ity, all of the equal-time correlations (such as rms fluctuations in cartesian or internal coordinates) will
be the same as for the vacuum calculation. Hence the companion program nmanal should be used to
compute those.

Input description for the /mdin file:

namelist default meaning
&data
ntrun 1 "type of run’ flag

1l: correlation function calculated is
for the deviation of the length of
the vector from the reference value
in the minimum energy structure.
i.e., <dr(t)dr(0)> / <dr(0)dr(0)>

2: for the orientation of the vector
i.e., <P2[r(t).r(0)]>

3: the frequency distribution is plotted
i.e., the imaginary parts of the
eigenvalues are counted at every interval
of 10 wavenumbers. Other input parameters
are irrelevant.

kup 1
lup 2 atom numbers defining a position vector
nvect 12 number of langevin modes to be used
tf 2.0 final time for correlation functions
i.e., t ranges from 0.0 to tf picoseconds
np 1000 number of points at which to calculate
correlation function between t = 0.0 and
t = tf ps.
bose .false. .true. if quantum (Bose) statistics are to be
used in populating the modes; =.false. (default)
if classical (Boltzmann) statistics are to be
used.
&end

The input file inpcrd is a standard Amber coordinate file; the file Imode is that created by the
nmode program with ntrun = 5. Output files are CORF (if ntrun = 1 or 2) and DENS, CUMU (if
ntrun = 3.) All of the output files (except Imdout) are input files for the <plot79> package, which will
create plots of the correlation functions. You should(?) have little trouble converting them to some
other plotting package in order to see the correlation functions.

1/30/113

LMANAL module

Page 260

Sample input file for nmode with ntrun=1

&data

ntrun = 1,
cut=10.0,
idiel=0,
nvect=6753,
ivform=0,
ilevel=0,

drms = 0.0001,

get vibrational modes for staph nuclease ternary complex

do vibrational calculation

cutoff; use same value in minimization

distance-dependent dielectric

write out all 3*N modes...

...in unformatted form...

..with no removal of trans. & rotation

will complain if rms gradient is not
less than this

nvect=4496,
ibeg=1, iend=4496,
ivform=0
natom=1529,
ihsful=0,
&end

3 4

11 12

20 21

28 29

38 39

&end
Sample input file for nmanal with ntrun=7
#
Get N-H S**2 values from quasi-harmonic modes
&data
ntrun=7, compute dipole-dipole correlation fns.

this many modes in input file

use all of the modes for the calculation
unformatted modes files

molecule has this many atoms

do no include distance fluctuations

atom numbers for N and H of residue 1

1/30/113

NUCGEN module Page 261

NUCGEN

Usage: nucgen [-0] -i ngin -o ngout -d ngdat -p pdbout

-0 Overwrite output files.

Purpose: This program generates cartesian coordinate models for either double helical DNA or
RNA with a number of possible conformations. The helical topology of the double helix is stored in a
file for individual types in terms of cylindrical coordinates. The program loads the required topoplogy
and applies two fold symmetry with necessary helical repeat and height values. The cartesian coordi-
nates are output in PDB format. The residue information is read as in the link module either for DNA
or RNA. The input is described below.

NUCGEN requires specification of two strands: if only one is given, it will wrap it into two with
highly stretched base-phosphate bonds across the end, so for single strands, specify a dummy strand
and edit it out of the resulting PDB file. NUCGEN only generates reasonable geometries for comple-
mentary base pairs.

NUCGEN can generate PDB files using the 1994 Amber force field convention, which does not
have explicit terminal hydrogen or phosphate residues. For the new residue names, only the bases need
to be specified, while for the old convention, terminal hydrogen residues (HB and HE) and phosphates
(POM) must also be specified. In the 1994 convention, residues are indicated by the first letter (A, G,
C, T) and terminal residues have an additional *5’ or "3’ appended (e.g. A5, A3). See the LINK docu-
mentation for a table of these names. The residue names in the input file must all be of either the old
or the new convention — mixed conventions will not work.

NOTE: the utility program NUKIT will generate NUCGEN and LINK input files for nucleic
acids interactively;
Usage: *" % nukit”

On VMS systems files are assigned by Fortran unit number. These are given below along with a
description of each file.

file unit purpose

ngin 5 Input: Control and sequence data for the run
ngout 6 Output: Diagnostics

ngdat 7 Input: Monomer geometry file, found in amber4l/dat

1/30/113

NUCGEN module Page 262

pdbout 10 Output: PDB output coordinates

Input data: Unit 5 File ’'ngin’

Nucleic Acid sequence information is given as described here for each strand. Both strands are
entered in the 5° to 3’ direction. This input is similar to LINK.

- 1A - A TITLE FOR EACH STRAND

FORMAT (20A4)

TITLE A title for the molecule.
- 1B - ILBMOL
FORMAT (A4)
ILBMOL Label for the type of molecule.
"D’ DNA
"R’ RNA
- 1C - RESIDUE INFORMATION FOR EACH STRAND

it is read in the following format until a blank
card is encounterd (card 1D).

LBRES(I) , I = 1,NRESM
FORMAT (16 (A4, 1X))

LBRES(I) Residue name.

NOTE: Cards 1A-1D are repeated for the second strand.

1/30/113

NUCGEN module Page 263

-2 - KEND
FORMAT (A4)
KEND Control to stop reading the nucleotide strands.
"END '’ end of reading the sequence information
-3 - CONTROL FOR THE TYPE OF DNA OR RNA CONFORMATION
TYPM
FORMAT (A8)
TYPM Name of the type of conformation to be generated.
" SARNA’ right handed a-rna (arnott)

"SAPRNA’ right handed a-prime rna (arnott)

"SLBDNA’ right handed bdna (langridge)

"SABDNA’ right handed bdna (arnott)

"$SSBDNA’ left handed bdna (sasisekharan)

' SADNA’ right handed a-dna (arnott)
"$SPECIAL’ special type by the user

-4 - special helical parameter
****x%x only if typm .eq. 'S$SSPECIAL’ ****x%*
hxrep , hxht
format(2£10.5)

hxrep Helical repeat angle in degrees for the special
type of conformation.

hxht Helical height.
NOTE: If you use '$SPECIAL’, you will have to
add the appropriate data to file ngdat (found

in the database directory). Consult subroutine
gennuc for details.

1/30/113

NUCGEN module Page 264

++++++ END OF INPUT ++++++

Rev A Revision by: George Seibel
Authors: U.C. Singh, N. Pattabiraman, S.N. Rao
Director: P.A. Kollman
Department of Pharmaceutical Chemistry
School of Pharmacy
University of California
San Francisco CA 94143
Phone (415) 476 4637

1/30/113

ambpdb

NAME

SYNOPSIS

DESCRIPTION

OPTIONS
—tit

-pqr

—atm
—bnd

FILES

BUGS

Page 265

ambpdb — convert amber-format coordinate files to pdb format
ambpdb [-tit title] [-pqrl-bndl-atm | < restrt > pdb

ambpdb is a filter to take a coordinate "restart" file from an AMBER dynamics or min-
imization run and prepare a pdb-format file. The program assumes that a prmtop file
is available, from which it gets atom and residue names. The source code is in the
src/etc/ directory.

The title, if given, will be output as a REMARK at the top of the file. It should be
protected by quotes or double quotes if it contains spaces or special characters.

Output will be in the format needed for the MEAD suite of programs created by Don
Bashford.

Output will be in the format used by Mike Connolly’s surface area/volume programs.

Output is a file that lists the bonds in the molecule, one per line; this file is used by the
“flex”” program created by Mike Pique.

Users should consult the code and the input instructions for these other programs to
see how these options are to be used.

There must be a prmtop file (with that name) in the current directory.

Inevitably, various niceties of the Brookhaven format are not as well supported as they
should be. The protonate program can be used to fix up hydrogen atom names.

1/30/113

protonate Page 266

NAME
protonate — add protons to a heavy-atom protein or DNA PDB file; convert proton
names between various conventions; check (pro)-chirality.

SYNOPSIS
protonate [-k | [-b | [-d info_file | < pdb > prot.pdb

DESCRIPTION
Protonate combines a program originally written by K. Cross to add protons to a
heavy-atom pdb file with many extensions by G.P. Gippert & D.A. Case. Names and
descriptions of the output protons are contained in the info-file (see below.) Protonate
can be used to add protons that don’t exist, to change the names of existing protons to
some new convention, and to check pro-chirality of protons in an input pdb file. The
source code is in the src/protonate/ directory.

OPTIONS

-k The output pdb file will “keep’ the proton coordinates of the input file, to the extent
consistent with how well it can identify what names they should “really” have. Oth-
erwise it will replace input protons with ones it builds.

-b The program will insert a space before the name of each heavy atom in the output file.

This is most often used to convert input files whose atom names begin in column 13 to
the Brookhaven format where most heavy atom names begin in column 14. NOTE:
“two-letter” heavy atom names (like FE or CA [calcium]) will not be correct; the
resulting output file must be hand-edited to check for this.

—d info_file Specifies the file containing information on how to build and name protons. The
default name is PROTON_INFO. This information used to determine where on the
amino acids the protons should be placed. The file provided handles funny Amber
residue names like HIE, HIP and HID and HEM. Other files provided include PRO-
TON_INFO .Brook, which uses Brookhaven proton naming convention (such as 1HB,
etc.), and PROTON_INFO.oldnames, which uses ‘““old” amber names. For example,
to take an Amber pdb file and convert to the Brookhaven naming convention, set ““-d
PROTON_INFO.Brook”.

Output to STDERR includes “matches” of protons the program builds with any found
in the input file, plus a list of any input protons that could not be matched. Question-
able “matches” are flagged and should be checked manually.

BUGS
Format of the PROTON_INFO file is not obvious unless you have read the code.

Methyl protons are built in a staggered conformation; hydroxyl protons in a arbitrary
(and generally sub-optimal) conformation. A program like pol_h or its equivalent
should be used (if desired) to place polar hydrogens on LYS, SER, THR, and SER
residues.

HIS in the input file is assumed to be HID. Users should generally explicitly figure
out the desired protonation state for histidines.

No attempt is made to identify heavy atoms in the input file that have two-letter ele-
ment names; this means that “Brookhaven-style” output may require some hand-

1/30/113

protonate Page 267

editing if atoms like calcium or iron are present.

It is assumed that the ‘“‘alternate conformer” flag in column 17 of the PDB file is
either blank, or ‘A’. The program needs to be recompiled to change this; perhaps this
should become an input option.

1/30/113

gwh, cion and pol_h Page 268

gwh, cion and pol_h

NAME
gwh — Guess Water H: set positions of polar hydrogens onto water oxygen positions
pol_h — set positions of polar hydrogens in proteins
cion — suggest possible counterion positions

SYNOPSIS
gwh [-p prmtop] [-w wat.pdb] [-c] [-e] < in.pdb > out.pdb
cion [-p prmtop] [-w wat.pdb] [-c] [-e] < in.pdb > out.pdb
pol_h [-p prmtop] [-w wat .pdb] < in.pdb > out.pdb

DESCRIPTION
Gwh sets positions of water hydrogens onto water oxygen positions that may be
present in PDB files, by optimizing simple electrostatic interactions. Pol_H resets
positions of polar hydrogens of protein residues (Lys, Ser, Tyr and Thr), by optimizing
simple electrostatic interactions. Cion suggests possible counterion positions. The
source code is in the src/protonate/ directory.

OPTIONS

—p prmtop The Parm topology file; default is “prmtop™.

—w wat.pdb Read water oxygen positions from the file wat.pdb, rather than the default name wat-
pdb.

—c (Gwh and cion only) A constant dielectric will be used to construct potentials, other-
wise the (default) distant-dependent dielectric will be used.

4 (Gwh and cion only) The electrostatic potential will be used to determine which

hydrogens are placed first; otherwise, a distance criterion will be used.

Accuracy of Pol_H & GuessWatH:

In the following the results for BPTI and RSA (ribosuclease A) are given together with those of
Karplus 2! and Ornstein 22 groups. In the case of Ornstein’s method, it handles only some of hydro-
gens in question and therfore I normalized (scaled) their results using expected values for random gen-
eration. The rms deviation from the experimental positions (neutron difraction) and the number of
hydrogens are shown below.

The accuracies seem to be similar among three approaches if scaled values of Ornstein’s data are

considered.

BPTI Lys Ser Tyr Thr Wat
#of H 12 1 4 3 112 47)
Pol_H 039 036 108 020 0.98(0.38)

21 A. T. Brunger and M. Karplus, Proteins, 4, 148 (1988).
22 M. B. Bass,,, R. L. Ornstein, Proteins, 12, 266 (1992).

1/30/113

gwh, cion and pol_h Page 269

Karplus 025 071 081 0.19 - (0.35
Ornstein 022 096 000 007 -
Ornstn(scaled) 0.51 096 128 007 (1.17)

“internal waters. “by random generation.

RSA Lys Ser Tyr Thr Wat
#of H 30 15 6 10 256
GuesWatH 061 096 122 096 098
Karplus 060 098 060 1.12 1.20
Ornstein 020 061 060 030

Ornstn(scaled) 049 089 0.76 093 (1.14)

“by random generation.

FILES
in.pdb must have been generated by AMBER, e.g. through LEaP, EDIT, ambpdb, or
the like: it must have exactly the same atoms (in the same order) as the prmtop file.

1/30/113

mdovrly

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

Page 270

mdovrly — optimally overlay all coordinate sets in an mdcrd stream
mdovrly [-c control_file] [-m mass_file] < mdcrdin > mdcrdout

Note that carnal also provides this function; mdovrly may be deleted from future
releases.

mdovrly is the first step of a three-step process to compute correlation functions from
coordinate streams such as those created by AMBER dynamics simulations. [The
subsequent steps are mdextract and mdcorrp2.] If you don’t want or don’t need to
remove overall translation and rotation, you can skip this step of the sequence. The
program basically acts as a filter, with some diagnostic information going to stderr.
The source code is in the src/nmr_aux/ directory.

The control_file has one line, with five integers in free format: natom, ntot, ncrd, ftyp,
and irot. The first two, natom and ntot should be the same, the number of atoms.
[They are only distinct for historical reasons.] The maximum number of coordinate
sets to use in given by ncrd; end-of-file on the input stream can also be used to end
input. The options for ftyp, the file-type indicator are as follows:

2 — Amber coordinate stream, created with the NTWX variable
4 — Amber coordinate, or ".xyz" file; not usually used.
5 - "binpos" file, a binary standard used at Scripps

Other numbers have only historical uses. All of these i/0 options are collected in the
subroutine fileio, which you can examine for details, or to support other coordinate
stream formats. Currently, the output file format is "binpos" format, which we find
very useful: the graphics program flex reads this format, and they can be concatenated
together. Finally, irot is O if no translation/rotation is to be done, is 1 if this is to be
carried out by rotating the molecule so that its principal moments of inertia are along
the coordinate axes, and is 2 if all coordinate sets are to be fit (in a least-squares sense)
to the first coordinate set. Option "1" is probably the least desirable, albeit in some
ways natural. Users should bear in mind that for flexible molecules, there is no rigor-
ous way to separate overall and internal motions, and some fiddling with the code may
be required. In many cases, (especially for relatively short trajectories) it may make
little difference what you do here.

The mass_file contains natom floating-point values, one "mass" for each atom. Actu-
ally, these are really weights for overlays, and not necessarily masses. For example, if
you wanted to fit on backbone heavy atoms, you could set their "mass" to 1.0, and
everything else to 0.0. The simple scripts pdb_to_mass and pdb_to_mass.bb provide a
convenient way to make this file.

Reads a control and a mass file, as described above; defaults are ctrlin and mass. Acts

1/30/113

mdovrly Page 271

as a filter on a coordinate stream.

SEE ALSO
mdextract, mdcorrp2

DIAGNOSTICS
Messages about what has been done are sent to stderr. It is typical to divert this to a
log file to have a record of what sort of coordiante manipulations were done.

BUGS
Send bug-reports and comments to case@scripps.edu. Program is based on
codes originally written by Art Palmer and Dave Case. The use of control_file might

seem strange here, but the remaining programs in the series read an expanded version
of this, so that a single control file can actually drive all steps of the process.

1/30/113

mdextract

NAME

SYNOPSIS

Page 272

mdextract — extract a set of interatomic vectors for correlation analysis from an mdcrd
stream

mdextract [-c control-file] < mdcrd > vector_file

DESCRIPTION

OPTIONS

FILES

SEE ALSO

BUGS

mdextract is the second step of a three-step process to compute correlation functions
from coordinate streams such as those created by AMBER dynamics simulations.
[The other steps are mdovrly and mdcorrp2.] The source code is in the
src/nmr_aux/ directory.

The first line of the control_file has four integers in free format: natom, ntot, ncrd, and
ftyp. The first two, natom and ntot should be the same, the number of atoms. [They
are only distinct for historical reasons.] The maximum number of coordinate sets to
use in given by ncrd; end-of-file on the input stream can also be used to end input.
The file type indicator ftyp is defined as follows:

2 — Amber coordinate stream, created with the NTWX variable
4 — Amber coordinate, or ".xyz" file; not usually used.
5 — "binpos" file, a binary standard used at Scripps

Other numbers have only historical uses. All of these i/0 options are collected in the
subroutine fileio, which you can examine for details, or to support other coordinate
stream formats.

The second card of control_file has a single integer, nch, which is the number of vec-
tors to be computed. The third card contains three free-format floating point values:
tstep, the time between snapshots; fcorr and tmax, which are ignored in this program.

The next nch cards contain a string and two integers, giving a name for the vector
(maximum 10 characters) and the atom numbers of the two atoms involved.

Reads a control file, as described above; default if ctrlin. An input coordinate stream
is on stdin, and the output vectors are placed into stdout. coordinate stream.

mdovrly, mdcorrp2

Send bug-reports and comments to case@scripps.edu. Program is based on
codes originally written by Art Palmer and Dave Case. The use of control_file might
seem strange here, but the other programs in the series read an expanded version of
this, so that a single control file can actually drive all steps of the process.

1/30/113

mdcorrp2

NAME

SYNOPSIS

Page 273

mdcorrp2 — take a set of vectors prepared by mdextract, and output correlation func-
tions for NMR analysis.

mdcorrp?2 [-c control-file | < vector_file

DESCRIPTION

OPTIONS

FILES

SEE ALSO

BUGS

mdcorrp2 is the final step of a three-step process to compute correlation functions
from coordinate streams such as those created by AMBER dynamics simulations.
[The other steps are mdovrly and mdextract.] The source code is in the
src/nmr_aux/ directory.

The first line of the control_file has four integers in free format: natom, ntot, ncrd, and
ftyp. The first two, natom and ntot should be the same, the number of atoms. [They
are only distinct for historical reasons.] The maximum number of coordinate sets to
use in given by ncrd; end-of-file on the input stream can also be used to end input.
The file type indicator ftyp is read but not used here.

The second card of control_file has a single integer, nch, which is the number of vec-
tors in the input file. The third card contains three free-format floating point values:
tstep, the time between snapshots; tcorr, the maximum time for which correlation
functions are to be computed (should be at most 1/3 to 1/2 of the simulation length),
and fmax, the maximum time in the simulation to be used. Ncrd and tmax can be set
to large values for the usual case where the entire trajectory is to be analyzed.

The next nch cards contain a string and two integers, giving a name for the vector
(maximum 10 characters) and the atom numbers of the two atoms involved.

Reads a control file, as described above; default is ctrlin. An input set of vectors is on
stdin, and the output correlations are placed in separate files, using the name of each
vector, followed by .ocf. These output files have comment lines (which begin with
"#") that give overall statistics, then lines with four floating-point values, the first two
of which are time and C(t), defined by <P2(0).P2(t)/r**3(0).r**3(t)>, normalized to
unity at t=0, as described in the reference below. This file can be directly sent to many
plotting programs such as gnuplot or xvgr.

mdovrly, mdextract. Algorithms are discussed in detail in Palmer & Case, J. Am.
Chem. Soc. 114, 9059-9067 (1992).

Send bug-reports and comments to case@scripps.edu. Program is based on
codes originally written by Art Palmer and Dave Case. The use of control_file might
seem strange here, but the other programs in the series read an expanded version of
this, so that a single control file can actually drive all steps of the process.

1/30/113

intense

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Page 274

intense — compute NOESY intensities from a structure

intense -tauc rot._corr._time,ns -taum mixing_time,sec.
[-p pdb_file -ioutput_intensity_file -c output_shift_skeleton
-cutoff cutoff -s smatrix_file |

Intense takes a structure from a pdb file as input, and outputs a list of NOESY intensi-
ties, suitable for input to other programs such as spectrum. The source code is in the
src/nmr_aux/ directory.

The input pdb file must include all hydrogens that you want to include in the spin sys-
tem. If a phe or tyr residue exists, the order of the hydrogen names must be HDI,
HE1, HZ (or HOH), HE2, HD2. TUPAC-IUB names for methyls are required for them
to be properly identified. The command line also must include rotational correlation
time and a mixing time.

All intensities greater the cutoff will be printed in the output intensity file. Default for
cutoff is 0.0005.

If present, the S-matrix file will be read and used instead of computing distances from
the pdb file; any matrix elements not present in the smatfile will be estimated from the
distances in the pdb file. The format of the smatfile is a namelist "smat", containing
the two-dimensional variable "s". Indices of s are the absolute proton numbers, i.e.
those in the pdb file.

The output cshfile contains the atom names in the proper order for providing chemical
shift information to the next program, spectrum. Edit this file to put the chemical
shifts in the first 15 columns. If you have already put your chemical shift information
into a database of the format support by Garry Gippert, then the script /case/nmr/spec-
trum/shiftconv will take the skeleton file that intense makes and insert the proper shifts
for you. See that shell script for instructions on using it.

Default file names are pdbfile, intfile, smatfile, and cshfile.

These programs are based on the "remarc" codes in Amber 4.0.

DIAGNOSTICS

BUGS

File names, correlation and mixing times and number of protons are output to stderr.
An error message is generated if the input pdb file has more than 750 protons or more
than 1500 total atoms; the program needs to be recompiled after changing the appro-
priate variables in the "nmr.h" file.

Format of the output file should be expanded to allow the parameters used to be
embedded as comments.

If a tyrosine is present, the proton HOH must be present, even if this is a D20 simula-
tion in which that proton has been exchanged away. The work-around is to include
HOH, but with very large coordinates (e.g. 999.,999.,999) so that it won’t contribute

1/30/113

intense Page 275

to the spin systems. Other exchanged protons can be left out, or entered as "D...".

1/30/113

spectrum

NAME

SYNOPSIS

Page 276

spectrum — compute smx format file from the output of intense

spectrum [-c chemical-shift-file -i intense-file -s smx-file -s1min omegal-min -s1max
omegal-max -s2min omega2-min -s2max omega2-max -hwidth half-width |

DESCRIPTION

SEE ALSO

BUGS

Spectrum takes the output of the intense program (q.v.) plus information on chemical
shifts and produces an output "smx" format spectrum that ranges from slmin to slmax
and from s2min to s2max. The source code is in the src/nmr_aux/ directory.

Peaks are assigned a half-width given by hwidth. The defaults are O to 10 ppm in each
direction, with a half width of 0.05 ppm. Default filenames are cshfile, intfile and smx-
file.smx. The output file is a 512 x 512 real smx file that should be acceptable for
viewing or processing by ftnmr. Since a square matrix is first set up, and then con-
verted to the funny block smx format, it should be relatively easy to modify this pro-
gram to accommodate other nmr analysis packages, or other plotting programs, etc.
To accommodate the default contour levels in ftnmr, the peaks are multiplied by
10%%7.

The program is currently configured for a maximum of 900 protons. This can easily
be changed by modifying parameter statements at the beginning of the program.

intense
Sample calculation is in /case/nmr/spectrum/example.

Only 512 x 512 spectra can be output. This should not be too hard to fix with a code
hack.

The width of the peaks must be the same in each direction, and the same for all peaks.

The header information that finmr uses is not fully documented, but spectrum will set
up some of the important ones: it assumes a spectral frequency of 500.00 MHz in each
dimension, sets up the proper spectral width and reference points (referenced at the
edge of the spectrum) and sets the axis type to "ppm". A simple revision could make
the spectrometer frequency an input variable.

1/30/113

rdis

NAME

SYNOPSIS

DESCRIPTION

Page 277

rdis — calculate distribution curve of a series of numbers
rdis min_val max_val n_points [radial] < input > output

Rdis takes the input values in the range {min_val ... max_val} and counts the fre-
quency of occurrence of values in each of n_points intervals (bins) in the range. The
output is n_points rows of four columns of numbers: the (x-value) of the center of the
bin; the normalized frequency of occurrence of input values in the bin; the smoothed
frequency; and the integral of the frequency. In the default, the frequency is the num-
ber of cases in the bin divided by the total number of cases in the range. The source
code is in the src/carnal/etc/ directory.

With the radial option, a volumetric normalization is also applied that is only appro-
priate for radial distributions around a point. This hinges on the fact that equal incre-
ments of radius give unequal volumes (shells) at different distances from the center of
a sphere. In this case, the normalization is such that the value at the average point
density is 1. That is, the value for each bin in the measured range is

(cases[bin] / Volume|[bin])

(total_cases_in_range / Volume[range])

1/30/113

curvop & curvemax Page 278

curvop

NAME
curvop — mathematical operations with curves

SYNOPSIS
curvop —{slalvimld} filel file2 > output

DESCRIPTION
Curvop subtracts, adds, averages, divides or multiplies two curves represented by x, y
values in filel and file2. The resulting curve is defined at the x-values in filel; if the x-
values in file2 do not correspond, linear interpolation is performed between neighbor-
ing points in file2 to obtain corresponding values for the operation. Naturally, the
curve resulting from the operation is only defined for the region of filel that is covered
by file2. The source code is in the src/carnal/etc/ directory.

OPTIONS

—-s Subtract filel.y — file2.y.

—a Add filel.y + file2.y.

-V Average filel.y and file2.y.

—-m Multiply filel.y * file2.y.

—d Divide filel.y / file2.y. If the Y value for file2 is O, the program will stop with an error
message.

NAME
curvemax — print x, y of cumulative maximum Y-value

SYNOPSIS

curvemax < input > output

DESCRIPTION
Curvemax reads a file of X, Y values and prints the X, Y values at the cumulative
maximum. l.e. printed Y value i + / will always be greater than or equal to value i.

1/30/113

Appendix A: NAMELIST Page 279

APPENDICES

Appendix A: Namelist Input Syntax

NAMELIST input is available on many host computers, including all of the machines on which
AMBER is supported. It dates back to the earlier 1960°s on the IBM 709, but is regrettably not part of
Standard FORTRAN (either 1966 or 1977). It is a part of the proposed Fortran 8.X standard.
NAMELIST input groups take the form:

&name

varl=value, var2=value, var3(sub)=value,
var4 (sub,sub,sub)=value,value,
var5=repeat*value,value,

&end

where the variables must be one of the names in the NAMELIST variable list. The order of the vari-
ables in the input list is of no significance, except that if a variable is specified more than once, later
assignments may overwrite earlier ones. Blanks may occur anywhere in the input, except embedded in
constants (other than string constants, where they count as ordinary characters). A comma (or the ter-
minal &END) must follow each constant; end-of-line does NOT constitute a valid constant separator.

The NAMELIST name &name must ALWAYS begin in column 2 of an input record. The
ampersand sign in &name and &end may optionally be replaced by a dollar sign, and the word “end”
after the dollar sign may optionally be omitted. Column 1 of all input records is ignored, and only
columns 2..80 are examined (in some implementations, a non-blank in the first column comments out
the whole line). The terminal &end may occur anywhere in the input character stream (ignoring col-
umn 1 of course); it need not begin in column 2.

Letter case is ignored in all character comparisons, but case is preserved in string constants. An
exception is that the namelist name itself must appear in lower case, e.g. &cntrl, not &KCNTRL. String
constants must be enclosed by single quotes (). If the text string itself contains single quotes, indicate
them by two consecutive single quotes, e.g. C1’ becomes ’C1°”" as a character string constant.

Scalar variables may NOT be subscripted, and must be followed by O or 1 constant.

Array variables may be subscripted or unsubscripted. An unsubscripted array variable is the
same as if the subscript (1) had been specified. If a subscript list is given, it must have either one con-
stant, or exactly as many as the number in the declared dimension of the array. Bounds checking is
performed for ALL subscript positions, although if only one is given for a multi-dimension array, the
check is against the entire array size, not against the first dimension. If more than one constant
appears after an array assignment, the values go into successive locations of the array. It is NOT nec-
essary to input all elements of an array.

There is one exception to the array specification syntax described above. For the most part, this
only occurs in the case where the host machine does not adequately support namelist input, and the
“portable”” namelist routines supplied with AMBER are used. In this case, character arrays must be
specified by explicit definition of each element of the array. E.g. ATNAME(1) = "H’, ATNAME(Q2) =
O’ will work, but ATNAME = "H’, O’ will not. This exception to array specification should only
occur for the “portable” namelist code, and only for character arrays (integer and real arrays can be

1/30/113

Appendix A: NAMELIST Page 280

specified as described above). To determine whether the “portable” namelist code was used, check the
value assigned to MACHINEFLAGS in the file amber41/src/MACHINE. If -DREGNML is not speci-
fied (e.g. if -DnoREGNML is specified instead), the “portable”” namelist is being used.

Any constant may optionally be preceded by a positive (1,2,3,..) integer repeat factor, so that, for
example, 25%3.1415 is equivalent to twenty-five successive values 3.1415. The repeat count separa-
tor, *, may be preceded and followed by O or more blanks. Valid LOGICAL constants are O, F, .F.,
FALSE., 1, T, .T.,and .TRUE.; lower case versions of these also work.

1/30/113

Appendix B: GROUP Page 281

Appendix B: GROUP Specification

Entering Group Information

This section describes the format used to define groups of atoms in various AMBER programs.
In sander, a group can be specified as a movable “belly”” while the other atoms are fixed absolutely in
space, and/or a group of movable atoms can independently restrained (held by a potential) at their
positions. In anal, groups can be defined for energy analysis.

Except in the analysis module where different groups of atoms are considered with different
group numbers for energy decomposition, in all other places the groups of atoms defined are con-
sidered as marked atoms to be included for certain types of calculations. In the case of constrained
minimization or dynamics, the atoms to be constrained are read as groups with a different weight for
each group.

Reading of groups is performed by the routine RGROUP and you are advised to consult it if
there is still some ambiguity in the documentation.

Input description:

-1 - Title

format(20a4)

ITITL Group title for identification.
Setting ITITL = 'END’ ends group input.
- 1A - Weight

This line is only provided/read when using GROUP input to
define restrained atoms.

format (£f)

WT The harmonic force constants in kcal/mol for the group
of atoms for restraining to a reference position.

- 1B - Control to define the group
KTYPG , (IGRP(I) , JGRP(I) , I =1,7)
format(a,1l4i)
KTYPG Type of atom selection performed. A molecule can be

defined by using only ’‘ATOM’ or 'RES’, or part of the
molecule can be defined by ’'ATOM’ and part by 'RES’.

1/30/113

Appendix B: GROUP Page 282

"ATOM’ The group is defined in terms of atom numbers. The atom
number list is given in igrp and jgrp.

"RES’ The group is defined in terms of residue numbers. The
residue number list is given in igrp and jgrp.

"FIND’ This control is used to make additional conditions
(apart from the 'ATOM’ and 'RES’ controls) which a given
atom must satisfy to be included in the current group.
The conditions are read in the next section (1C) and are
terminated by a SEARCH card.

Note that the conditions defined by FIND filter any set(s) of atoms
defined by the following ATOM/RES instructions. For example,

-- group input: select main chain atoms --
FIND

* * M *

SEARCH

RES 1 999

END

END

"END’ End input for the current group. Followed by either another
group definition (starting again with line 1 above), or by a second
"END’ ‘‘card’’, which terminates all group input.

IGRP(I) , JGRP(I)

The atom or residue pointers. If ktypg .eq. 'ATOM’ all
atoms numbered from igrp(i) to jgrp(i) will be put into
the current group. If ktypg .eq. 'RES’ all atoms in the
residues numbered from igrp(i) to jgrp(i) will be put
into the current group. If igrp(i) = 0 the next control
card is read.

It is not necessary to fill groups according to the
numerical order of the residues. In other words, Group 1
could contain residues 40-95 of a protein, Group 2 could
contain residues 1-40 and Group 3 could contain residues
96-105.

If ktypg .eq. 'RES’, then associating a minus sign with
igrp(i) will cause all residues igrp(i) through jgrp(i)
to be placed in separate groups.

In the analysis modules, all atoms not explicitly defined
as members of a group will be combined as a unit in the

(n + 1) group, where the (n) group in the last defined
group.

1/30/113

Appendix B: GROUP Page 283

- 1c - Section to read atom characteristics
**xx%* Read only if KTYPG = 'FIND’' **x*%*
JGRAPH(I) , JSYMBL(I) , JTREE(I) , JRESNM(I)

format (4a)

A series of ‘‘filter’’ specifications are read. Each filter consists
of four fields (JGRAPH,JSYMBL,JTREE,JRESNM), and each filter is placed
on a separate line. Filter specification is terminated by a line with
JGRAPH = ’'SEARCH’. A maximum of 10 filters may be specified for a
single 'FIND’ command.

The union of the ‘‘filter’’ specifications is applied to the atoms defined
by the following ATOM/RES cards. I.e. if an atom satisfies any of the
filters, it will be included in the current group. Otherwise, it is not
included. For example, to select all non main chain atoms from residues

1 through 999:

-- group input: select non main chain atoms --
FIND
**S
* * B

**3

* Ok ¥

* * R
SEARCH
RES 1 999
END
END

"END’ End input for the current group. Followed by either another
The four fields for each filter line are:

JGRAPH(I) The atom name of atom to be included. TIf this and the
following three characteristics are satisfied the atom is
included in the group. The wild card ’'*’' may be used to
to indicate that any atom name will satisfy the search.

JSYMBL(I) Amber atom type of atom to be included. The wild card
"*’ may be used to indicate that any atom type will
satisfy the search.

JTREE (I) The tree name (M, S, B, 3, E) of the atom to be included.
The wild card '*’ may be used to indicate that any tree
name will satisify the search.

JRESNM(I) The residue name to which the atom has to belong to be

included in the group. The wild card ’'*’' may be used to
indicate that any residue name will satisify the search.

1/30/113

Appendix B: GROUP Page 284

Examples:

The molecule 18-crown-6 will be used to illustrate the group options. This molecule is com-
posed of six repeating (-CH2-O-CH2-) units. Let us suppose that one created three residues in the
PREP unit: CRA, CRB, CRC. Each of these is a (-CH2-O-CH2-) moiety and they differ by their dihe-
dral angles. In order to construct 18-crown-6, the residues CRA, CRB, CRC, CRB, CRC, CRB are
linked together during the LINK module with the ring closure being between CRA(residue 1) and
CRB(residue 6).

Input 1:

Title one
RES 1 5
END

Title two
RES 6
END

END

Output 1: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group 2 will
contain residue 6 (CRB).

Input 2:
Title one
RES 1 5
END
Title two
ATOM 36 42
END
END

Output 2: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group 2 will
contain atoms 36 through 42. Coincidentally, atoms 36 through 42 are also all the atoms in residue 6.

Input 3:
Title one
RES -1 6
END
END

Output 3: Six groups will be created; Group 1: CRA, Group 2: CRB,..., Group 6: CRB.
Input 4:

Title one
FIND

02 0S M CRA
SEARCH

RES 1 6
END

END

Output 4: Group 1 will contain those atoms with the atom name *O2’, atom type OS’, tree name "M’
and residue name 'CRA’.

1/30/113

Appendix B: GROUP Page 285

Input 5:

Title one
FIND

02 0S * *
SEARCH
RES 1 6
END

END

Output 5: Group 1 will contain those atoms with the atom name *O2’, atom type ’OS’, any tree name
and any residue name.

1/30/113

Appendix C: Parameter Development Page 286

Appendix C: Parameter Development

How should one proceed to develop parameters for new molecules or fragments? The general
principle is to use analogy as much as possible. The amount of effort that should be expended is
related to the scientific question being asked. To accurately calculate thermodynamic interactions with
water or a macromolecule, one needs the best parameters that can be obtained. If only qualitatively
reasonable geometries are needed, less work may be required. Van der Waals, bond, angle, torsion and
improper torsion parameters are discussed; the philosophy of derivation of specific atomic charges for
a new residue is given in Appendix D.

Atom types. The first step in parameter development is to make a two-dimensional sketch of the
fragment for which parameters are needed, and then to assign atom types to the atoms. The comments
in the first section of the parm94 .dat file describe the hybridization and other attributes of the atom
types for the 1994 force field; 23 for the older force field, one may consult the Weiner et al. force field
papers. 24 25 This approach may be augmented by looking at the atom types in the existing residues in
the files all *94.in. For example, in pyridine the nitrogen would be assigned the same type (NC)
as N1 and N3 in adenine. Note that an atom type is intrinsic to an array of distance, angle, and dihe-
dral parameters involving the types of the neighboring atoms, as well as having its own van der Waals
(VDW) parameters, and, of course, atomic mass (charge is not fixed per atom type). Therefore, if a
new atom type is required, the first step is to attempt to reason by analogy and clone as many of the
pre-existing parameters as possible to account for the environment of the new atom. Here it is instruc-
tive to consider the variability of the existing parameters, which tend to be duplicated over various
combinations of atoms. This step may also be required if old atom types are used in a new topological
relation.

For example, consider the oxygen of a sulfoxide or a sulfone:

R R
| |
:$=0 0=5=0
| |
R R’

We would expect the van der Waals parameters of this oxygen to be similar to those of a carbonyl oxy-
gen of the force field (type ‘O’):

or to those of carboxyl or phosphate oxygens (type ‘O2’ in both examples)

23 Cornell, WD., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, Jr. K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W.,
Kollman, P.A. J. Am. Chem. Soc. 117,5179-5197 (1995).

24 Weiner, S.J., Kollman, PA., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr., Weiner, P. J. Am. Chem. Soc. 106,
765-784 (1984).

25 Weiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A. J. Comput. Chem. 7,230-252 (1986).

1/30/113

Appendix C: Parameter Development Page 287

R
|
02 0s
/ |
R - C 02 - P - 02
\ |
02 0s
|
Rl

because VDW radii are dominated by the number of electrons in an atom and are not very sensitive to
chemical environment. In fact, the VDW parameters for types ‘O’ and ‘O2’ are identical. Can one of
these types be used for the oxygen in sulfoxide/sulfone? The environment must now be considered. If
no suitable analogy can be found, a new atom type must be created and a complete set of bond, angle,
and dihedral parameters for its neighbors added to the force field. In this case, both sulfoxide and sul-
fone oxygens are substituents of tetrahedral sulfurs rather than trigonal planar carbons, so the phos-
phate oxygen case makes an appealing analogy. We then check whether any existing bond, angle or
dihedral parameters involve a S=°‘02’ bond, and if they do, we check that those parameters are appro-
priate for this case of an S=0 bond. But there are no such parameters — it is therefore reasonable to
extend the use of type ‘02’ for this case. (Had there been inappropriate S=‘O2’ parameters, we might
want to either make a new sulfur type, or make a new oxygen type starting with the VDW parameters
of ‘O’ and ‘O2’.) We continue discussion of bond and angle parameters for these example fragments
below.

van der Waals parameters. What if no atom type lends itself to adaptation? When creating a
new type, the first thing one must consider is VDW parameters. As illustrated above, for organic com-
pounds these parameters may be straightforward to find by analogy based on element and bond order
alone. Monoatomic ions, however, do not present such analogies in the AMBER force field and are
discussed in more detail as an example.

The shape of the VDW potential for a given atom type is specified in terms of the distance
between two atoms of the same type at the minimum energy point. Half the interatomic distance at that
point is treated as the basic radius, or R*, parameter for that type. The form for the radial potential for
two atoms is the sum of the R* values of their types. The potential well depth (‘e’) of the minimum
energy point between two atoms of the same type is combined with the potential of another atom type
by taking the root of the product. (Other parametric forms can be used which tend to have different
type-type ‘combining rules’.)

The simplest approach to deriving VDW parameters is to match a relevant experimental determi-
nation of the size of the atom in question. One source of such measurements is diffraction data. The
sum of metal and oxygen Pauling radii 2° tends to be 3% smaller than indicated by water-ion neutron
and X-ray diffraction data for Li+ and Na+ ions, 2% smaller than for K+, and 1% smaller than for Rb+
and Cs+. 27 Another source of ion ‘size’ information is crystallographic studies of ion complexes. 28
Since van der Waals parameters consist of two terms, the parameters that e.g. yield a given first peak of

26 Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; Cornell University Press: Ithaca, New
York, 1960.

27 Ross, W.S. and Hardin, C.C., J. Am. Chem. Soc. 116, 6070-6080 (1994). (This discussion of VDW parameters is based on that
work.)

28 Vedani, A., Huhta, D. W., J. Am. Chem. Soc. 112,4759-4767 (1990) and references therein.

1/30/113

Appendix C: Parameter Development Page 288

the radial distribution of the distance between two types of atoms are not unique. Another variety of
experimental data that can contribute to parameterization is the free energy of solvation in water or
another relevant solvent. However, it is still not clear whether the combination of experimental size
and solvation free energy is sufficient to determine unique R* and ‘e’ parameters for an atom in rela-
tion to an existing type. A further complication arises because an atom type may come into contact
with more than one other type, and nothing in principle guarantees that VDW parameters for a group
of types can be fitted to yield uniformly correct pairwise potentials. Therefore it is important to choose
parameters consistent with the most significant atom types that the new type will come in contact with.
To a first approximation, atom types that tend to be oppositely charged, if present, are of most interest.
In a particularly important case for ions, the TIP 2% water models (as well as some other waters) have a
spherical van der Waals potential centered on the water oxygen (type ‘OW’), which is somewhat
inflated to enclose the hydrogen atoms in the molecule. Thus a cation that has been parameterized to
give a correct ion-‘OW’ radial distance distribution function in such a water model will be *“smaller”
and come in closer contact with neighboring atoms if it is bound in a molecule consisting of AMBER
atoms.

Moreover, remembering that different pairwise combining rules are in use in the modeling com-
munity, parameters from one convention must be adapted to yield the same results for a given pair of
types in another scheme. Thus it was necessary to adapt the monovalent cation parameters of Aqvist
30 (found in parm94.dat and parm91.dat) for AMBER so that the ion-water combined potential
gave the same optimal distance as with the combining rules used by Aqvist. Matching the ion size in
the environment seems to be sufficient in the case with small monoatomic monocations; the default has
traditionally 3! been to use a somewhat arbitrary well depth (epsilon) of 0.1 kcal/mol, characteristic of
a rather nonpolarizable atom, and fit an R* parameter (see the Ross and Hardin reference). For the
multivalent ions, different further approaches may be considered to capture the quasi-bonding electron
mobility, including the use of explicit bonds or hydrogen bonding terms (see the Vedani and Huhta ref-
erence).

We have also discussed the derivation of van der Waals parameters for hydrogen in different
bonding environments. 32 Using ab-initio calculations to study the interaction between water and vari-
ous hydrogens, we found that a reduction in R* was required for hydrogens attached to carbons with
adjacent electronegative atoms. This trend is nicely paralleled in the progessively smaller R* for
hydrogens attached to carbon (HC), nitrogen (H), and water oxygen (HW).

Bond and angle parameters. Having chosen or created one or more atom types and sets of van
der Waals parameters, the bond, angle and dihedral parameters must be created. Equilibrium bond
lengths and angles may be obtained from tabulations of experimental data in the literature. 33 34 Initial
bond and angle force constants may be chosen based upon analogy to similar parameters in the force
field or using the method of Hopfinger and Pearlstein. 33 See 3¢ for an example of extending the
Weiner et al. force field to guanosine triphosphate and analogs. The AMBER-1994 force field

29 Jorgensen, W.L., Chandreskhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. J. Chem. Phys. 79,926-935 (1982).

30 Rqvist, J., J. Phys. Chem. 94, 8021-8024 (1990).

31 Wipff, S. J., Weiner, P., Kollman, P. A. J. Am. Chem. Soc. 104, 3249 (1982).

32 Veenstra, D. L., Ferguson, D. M., and Kollman, P. A. J. Comput. Chem. 13,971-978 (1992).

33 Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., and Taylor, R. J. Chem. Soc. Perkin Trans. I, S1-S19 (1987).

34 Harmony, M. D., Laurie, R. W., Kuczkowski, R. L., Schwendemann, R. H., Ramsay, D. A., Lovas, F. J., Lafferty, W. J., and Maki,
A.G. J. Phys. Chem. Ref. Data, 8,619 (1979).

35 AJ. Hopfinger and R.A. Pearlstein, J. Comp. Chem., 5,486 (1985).
36 J.F. Cannon, J. Comp. Chem., 14,995-1005 (1993).

1/30/113

Appendix C: Parameter Development Page 289

contains a limited number of unique bond and angle force constants and therefore selection by analogy
is a feasible starting point. Returning to our sulfoxide/sulfone example, we find that the only existing
bonds involving O2 are:

Kbond Rbond
C -02 656.0 1.250 Jcc,7,(1986),230; GLU,ASP
02-P 525.0 1.480 Jcc,7,(1986),230; NA PHOSPHATES

and it would be reasonable to use the O2-P force constant with a bond distance from the literature.
Similarly, it would be reasonable to use the same angle bending parameters as for phosphates:
Ktheta(02-P-02) = Ktheta(0-S-0)
Ktheta(02-P-0S) = Ktheta(R-S=0)
Ktheta(0S-P-0S) = Ktheta(R-S-R)

Unless only crude parameters are desired, one should check the force constants by means of normal
mode calculations if spectroscopic measurements are available for comparison; such calculations on
N-methylacetamide are described in the Weiner ef al. JACS 1984 paper. The bond and angle parame-
ters are the primary determinants of the high and middle frequency vibrational modes of a molecule.
For applications which require the highly accurate reproduction of vibrational frequencies, it is neces-
sary to use a force field which includes higher order terms (anharmonicity) and cross-terms. For mod-
eling the structures and interactions of molecules which are not highly strained, however, the simple
harmonic approximation used in AMBER appears to be quite adequate.

Dihedral parameters. The dihedral parameters, in conjunction with the atomic charges and van
der Waals parameters, are the primary determinants of the relative conformational energies of a
molecule. The AMBER parameters IDIVF, PK, PN, and PHASE are used to define the torsional
potential energy function. Each bonded series of atoms I-J-K-L must have at least one set of these
dihedral parameters in the force field (just as every bonded pair I-J or triplet I-J-K must have bond or
angle parameters, except that for dihedrals multiple terms may be used). The torsional energy function
formula is:

Etors = (PK /IDIVF) * (1 + cos(PN * phi - PHASE))

Let us look at a few examples in order to illustrate the nature of the dihedral parameters. For our
first example (Figure 1), if atoms J and K are sp3 carbons (type CT) as in the molecule ethane (H3C-
CH3), then the intrinsic barrier to rotation about the J-K bond is on the order of 3 kcal/mol. PK is
equal to one-half of the barrier magnitude 37 and would therefore be equal to 1.5 kcal/mol. The topol-
ogy about the dihedral of interest has a three-fold periodicity (PN), that is, there are three potential bar-
riers as the C-C bond is rotated -180 to 180 degrees. These barriers occur when the methyl hydrogens
eclipse each other: at 0, -120, and 120 degrees. Since the dihedral formula is a Fourier series truncated
to a single cosine term, no phase shift would be needed to reproduce the potential energy barriers and
PHASE = 0 degrees. (PHASE = 0 degrees if an energy maximum is at 0 degrees; PHASE = 180
degrees if an energy minimum is at 0 degrees.) The final dihedral parameter that must be specified is
the number of torsions associated with the central bond (IDIVF), which is the product of the number
of substituents on the two central atoms. For ethane, this is 3x3 = 9. So we have:

PK = 3.0 kcal/mol / 2.0 = 1.5 kcal/mol
PN = 3
PHASE = 0.0 degrees

37 Because the (1 + cos()) term ranges from 0..2, it is scaled to 0..1 by including the divisor of 2 in the energy term, PK.

1/30/113

Appendix C: Parameter Development Page 290

Figure 1
IDIVF = 9

These same torsional parameters can be used for n-butane, and the results are in good agreement with
experiment and higher-level calculations for the relative energy of trans and gauche minima and cis
and skew energy barriers.

Consider now the molecule ethylene, H2C=CH2, whose dihedral potential energy is shown in
Figure 2.

Figure 2

1/30/113

Appendix C: Parameter Development Page 291

The lowest-energy conformation of this molecule is planar with a two-fold (PN = 2), 60 kcal/mol
(PK = 30.0 kcal/mol) barrier to rotation about the C=C bond. The barriers are found at dihedral angles
of -90 and 90 degrees (energy minimum at 0 degrees), and can be reproduced by the truncated Fourier
series only if a phase shift of 180 degrees (PHASE = 180.0 degrees) is used.

PK = 60.0 kcal/mol / 2.0 = 30.0 kcal/mol
IDIVF = 4

PN = 2

PHASE = 180.0

Finally, we examine a hypothetical molecule ZH2C-CH2Z, where Z represents an electroneg-
ative functional group. Let us imagine that we either have experimental data on the relative conforma-
tional energies or we have simulated the rotational potential of this molecule with a series of quantum
mechanical calculations. In practice, this is only done for minimum and maximum energy conforma-
tions — trans, gauche+, gauche-, eclipsed, skew, etc. In our example, the energy profile shows that the
trans conformation (Z-C-C-Z = 180 degrees) is about 0.5 kcal/mol less stable than the gauche.

Before fitting the torsional parameters, we must generate the energy profile for the molecular
mechanical nonbonded potential as was done for the quantum potential, subtract this curve from the
quantum curve, and fit the torsional potential to the difference potential.

Before these calculations can be done, atomic charges need to be calculated, also by fitting to
quantum mechanical results. The difference potential is then deconvoluted into Fourier series terms
(Figure 3) which give the force field parameters:

IDIVF PK PHASE PN
Z-CT-CT-2 1 0.260 0 -3
Z-CT-CT-2 1 0.384 0 -2
Z-CT-CT-2 1 0.241 0 1

which result in the total torsional potential shown in Figure 4. (In AMBER, PN is set to less than zero
when additional terms remain to be read.)

Care must be taken when deconvoluting the torsional potential not to introduce spurious minima
or maxima into the rotational energy profile. The combined potential of the deconvoluted parameters
can be plotted directly by a graphing program, or the torsional energy profile can be ‘empirically’ gen-
erated at 20-30 degree intervals in AMBER.

In practice, such an elaborate Fourier series treatment may not be appropriate because (a) the
quantum mechanical treatment may not be accurate enough to warrant it, (b) one would rather have a
simpler torsional potential that is more consistent with the existing force field and (c) the electrostatic
potential fitting procedure may capture the torsional energy profile well enough so that many terms are
not needed. For example, in the case of 1,2-difluoroethane, the known gauche tendency of the fluo-
rines can be simulated by adding a twofold torsion

IDIVF PK PHASE PN
F-CT-CT-F 1 X 0 2

with ‘X’ adjusted to make the total molecular mechanical energy of the gauche conformation 1
kcal/mol lower than the trans conformation.

Improper torsions. Improper torsions are so named because the atoms involved are not serially
bonded; rather they are branched:

1/30/113

Appendix C: Parameter Development Page 292

Figure 3

Figure 4

J

K
/\
I L

Improper I-J-K-L

1/30/113

Appendix C: Parameter Development Page 293

The convention is that the central atom is listed in the third position of the dihedral (‘K’ in the figure).
Improper dihedral potentials are sometimes necessary to reproduce out-of-plane bending frequencies,
i.e. they keep four atoms properly trigonal planar for a two-fold torsional potential (PN=2). They are
additionally used in the united-atom force field model when a carbon with an implicit hydrogen is a
chiral center; in effect they keep the position from inverting (PN=3).

The PHASE for improper torsions is always 180 degrees. Improper torsional parameters listed
in the force field file they can use “wild-card” specifications (‘X’) for the non-central atoms (note that
wild-card impropers must follow the explicit ones in the parm.dat force field file). When using the
Prep-Link-Edit-Parm (‘PLEP’) programs to create coordinate and parameter input files, the improper
torsions must also be specified by atom name in the Prep residue input file. In LEaP, every atom with
three substituents is matched against the impropers in the force field file, and all matches are applied
(discarding any wild-card terms if an explicit match is found). Thus care must be taken that a new
improper does not inadvertently match other cases. In both PLEP and LEaP, an improper with no wild
cards causes all wild-card-containing impropers to be ignored. Except for not mixing wild-card with
explicit cases, all improper terms that match a given central atom are applied. In LEaP, if no match is
found, no improper term is applied (unlike bonds, angles and ‘proper’ torsions, for which parameters
must exist). In PLEP, a parameter must be in parm.dat if there is an improper in the Prep input.

Hydrogen bonding parameters. Unlike the previous AMBER force fields, the 1994 force field
does not include a 10-12 hydrogen bonding function. This function, however, is still supported by the
software. When using the hydrogen bonding function, all relevant pairs of atom types need to have
parameters. Note that if a pair of atom types has H-bond (10-12) parameters, these will override any
van der Waals (6-12) parameters for that pair.

Atomic charges. To generate atomic (‘point’ or ‘partial’) charges for a new fragment, the elec-
trostatic potential around the fragment is first calculated at a grid of points using quantum or semiem-
pirical methods, then charges at the atom centers are fit to reproduce the potential using the RESP
(Restrained ElectroStatic Potential) program. The amount of effort applied can vary considerably;
multiple conformations and even families of analogs can be considered, as has been done with the pro-
teins and nucleic acids in the AMBER-1994 38 force field. The charges for the AMBER-1994 force
field have been calculated at the 6-31G* basis set level of ab initio theory and to maintain consistency,
this basis set should be used when calculating charges for a new molecule. (See Appendix D regard-
ing the charge-fitting philosophy.)

It is important to energy minimize the fragment at a suitable level of theory before calculating
the electrostatic potential around it. Quantum mechanical geometry optimizations were considered to
be too expensive for the amino acid charges in the AMBER-1994 force field. Rather, the RESP
charges were calculated after first minimizing the geometries using the Weiner et al. force field.
MM2/MM3-minimized geometries would also be reasonable for examples when a quantum mechani-
cal optimization is deemed too expensive. In general, the charges are likely to vary more as a function
of conformation than degree of optimization. This is illustrated by the results obtained for the alanyl
and glycyl dipeptides (Cornell ef al. paper).

38 Cornell, WD., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, Jr. K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W.,
Kollman, P.A. J. Am. Chem. Soc. 117,5179-5197 (1995).

1/30/113

Appendix D: Charge fitting philosophy Page 294

’ Appendix D: Charge fitting philosophy

Wendy Cornell

The philosophy of the Kollman group (AMBER) has been that the accurate representation of electro-
static interactions is crucial for a force field intended for application to biological molecules. 3%

We note that the choice of a particular force field should depend on the system properties one is
interested in. Some applications require more refined force fields than others. Moreover, there should
be a balance between the levels of accuracy or refinement of different parts of a molecular model.
Otherwise the computing effort put into a very detailed and accurate part of the calculations may easily
be wasted due to the distorting effect of the cruder parts of the model. 40

In other words, a force field which has a complicated potential form for representing bonds and
angles and is very precise in terms of reproducing geometries and vibrational frequencies will not
accurately model complex intermolecular interactions if the charge model is not also of high quality.

The new charges which were developed for the 1994 force field are called RESP charges, for
Restrained ElectroStatic Potential fit. This modification of the original ESP method was developed by
Christopher Bayly, who was a postdoc in the group. *!

The basic idea with electrostatic potential fit charges is that a least squares fitting algorithm is
used to derive a set of atom-centered point charges which best reproduce the electrostatic potential of
the molecule. In the AMBER charge fitting programs, the potential is evaluated at a large number of
points defined by 4 shells of surfaces at 1.4, 1.6, 1.8, and 2.0 times the VDW radii. These distances
have been shown to be appropriate for deriving charges which reproduce typical intermolecular inter-
actions (energies and distances). The dipole moment of the molecule is well reproduced.

Other programs have embedded the molecule in a cubic grid of points to evaluate the potential.
We believe that assigning the points along the contours of the molecule provides a reasonable sam-
pling of the esp around each atom.

The value of the electrostatic potential at each grid point is calculated from the quantum mechan-
ical wavefunction. The charges derived using this procedure are basis set dependent. For example, the
Weiner et al. force field employs STO-3G based charges, whereas the new Cornell et al. 1994 force
field uses charges derived using the 6-31G* basis set. The 6-31G* basis set is bigger and, for the most
part, “better.”” Because quantum mechanics calculations scale as the number of basis functions to
about the 2.7 power (HF as implemented in Gaussian92), the bigger 6-31G* basis set was prohibitively
large for use in developing the earlier 1984/1986 force field.

The 6-31G* basis set tends to result in dipole moments which are 10-20% larger than gas phase.
This behavior is desirable for deriving charges to be used for condensed phase simulations within an
effective two-body additive model, where polarization is being represented implicitly. In other words
a molecule is expected to be more polarized in condensed phase vs. gas phase due to many body

39 Cieplak, P., Cornell, W.D., Bayly, C., and Kollman, P., “Application of the Multimolecule and Multiconformation RESP Methodol-
ogy to Biopolymers: Charge Derivation for DNA, RNA, and Proteins” J Comp Chem, in press.

40 van Gunsteren, W.F and Berendsen, HJ.C., Angew. Chem. Int. Ed. Engl. 29,992 (1990) — a lucid and succinct review of MD appli-
cations to chemistry.

41 «A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Determining Atom-Centered Charges: The
RESP Model,” C.I. Bayly, P. Cieplak, W.D. Cornell, and P.A. Kollman, J. Phys. Chem. 1993, 97, 10269.
“Application of RESP Charges to Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation,” W.D.
Cornell, P. Cieplak, C.I. Bayly, and P.A. Kollman, J. Am. Chem. Soc. 1993, 115, 9620.

1/30/113

Appendix D: Charge fitting philosophy Page 295

interactions, so we ‘‘pre-polarize” the charges.

A study by St-Amant er al. *? calculated DFT charges for a number of small molecules and
found them to be smaller than HF/6-31G* derived ones. DFT charges for methanol did not reproduce
the relative free energy of solvation of methanol. Such charges may be more appropriate for use with
a non-additive model, since the DFT model reproduced the gas phase dipole moments very well.

ESP fit charges have many advantages. They reproduce interaction energies well. They can be
calculated in a straightforward fashion. They have been shown to perform well at reproducing confor-
mational energies when used with an appropriate 1-4 electrostatic scale factor. The Cornell et al.
JACS paper provides much of the validation of our new charge model. A study by Howard, Cieplak,
and Kollman 43 showed how ESP and RESP charges performed quite well at modeling the conforma-
tional energies of a series of 1,3-dioxanes. In addition, a more thorough study of the performance of
RESP charges at calculating small molecule conformational energies is currently underway in the
group.

It should be noted that Mulliken charges do NOT reproduce the electrostatic potential of a
molecule very well. Mulliken charges are calculated by determining the electron population of each
atom as defined by the basis functions. When the density is associated with the square of a single
basis function, that density is assigned to the atom associated with that basis function. Similarly, if the
density is associated with 2 basis functions which are on a common atom, the density is assigned to
that atom. The ambiguity arises when the density is associated with 2 basis functions lying on differ-
ent atoms. In that case the density is partitioned equally onto each atom.

Another charge model is that of Gasteiger-Marsili. 4* This approach involves the partial equal-
ization of electronegativity between bonded atoms.

A description of RESP. The basic idea behind the new charge fitting algorithm is that the charges
on non-hydrogen atoms are restrained to an “optimal” value of zero. This model evolved from work
carried out by Christopher Bayly, which showed that charges on buried atoms (such as alkyl carbons)
were not well determined by the electrostatic potential points. Such buried charges often assumed
large values during the fitting process and the values of these charges showed great conformational
variability. The restraints are hyperbolic in nature, so approximately the same restraining force is felt
by charges of all magnitudes. This reduces the magnitude of charges which can be reduced (typically
the ones buried within the residue) without affecting the fit to the potential by much. For example,
Christopher Bayly shows in the JPC paper that the charges on the methyl atoms in methanol can be
significantly reduced without impacting the fit, while the charges on the hydroxyl O and H have well
defined values. An earlier model employed harmonic restraints, but they reduced the values of the het-
eroatom charges too drastically since those values (typically +/- 0.6 or higher) fell in the steep part of
the function. The details of the derivation of this method are given in the Bayly et al. JPC paper.

The RESP charges show less conformational variability than the standard ESP charges. They
result in very good conformational energies for the small molecules studied to date using only a very
simple torsional potential. The RESP charges also reproduce the important interaction energies and
free energies of solvation. Furthermore, fitting can be carried out using multiple conformations and/or
multiple molecules.

42 «Calculation of Molecular Geometries, Conformational Energies, Dipole Moments, and Molecular Electrostatic Potential Fitted
Charges of Small Organic Molecules of Biochemical Interest Using Density Functional Theory,” St-Amant, A., Cornell, W.D., Halgren,
T.A., and Kollman, P.A., J. Comp. Chem., in press.

43 <A Molecular Mechanical Model that Reproduces the Relative Energies for Chair and Twist-Boat Conformations of 1,3-Dioxanes,”
Howard, A.E., Cieplak, P., and Kollman, P.A., J. Comp. Chem., 1995, 16:2,243-261.

44 Gasteiger and Marsili, Tet. Lett. 1980, 36, 3219.

1/30/113

Appendix D: Charge fitting philosophy Page 296

Charges for the old AMBER (Weiner et al.) force field were derived using the STO-3G basis set.
The 6-31G* basis set was used for the new charges because it exaggerates the dipole moment of most
residues by 10-20%. It thus “builds in”’ the amount of polarization which would be expected in aque-
ous solution. This is necessary when using an effective two-body force field which does not include
explicit polarization. The 6-31G* charges are then critical for the side of the free energy cycle where
one solute is being mutated into another in solution. Charges derived using a higher level of theory
(either in terms of a bigger basis set or through the inclusion of correlation) won’t necessarily be better
for such applications if they do not result in dipole moments which are enhanced over the gas phase
values.

The RESP method involves a two-stage approach where charges on atoms such as methyl hydro-
gens are not forced to be equivalent until the second stage. At that point they are refit while charges on
the other atoms are constrained to their values from stage one. Forcing methyl hydrogens to have
equivalent charges during the first stage can adversely affect the values of the heteroatom charges,
because such hydrogens are not equivalent in a static conformation. In the standard ESP model,
methyl hydrogen charges were typically averaged after the fit, but this averaging often changed the
value of the dipole moment as well as the fit to the potential.

One problem with electrostatic potential fit charges in general is that they reproduce the molecu-
lar potential and the dipole moment very well for the conformation of the molecule employed in the fit.
However, when those charges are applied to other conformations, the agreement is not as good. Chris
Reynolds proposed using multiple conformations of a molecule in the charge fitting process. 4’ In fit-
ting the amino acid charges for our new force field, we used 2 conformations for each amino acid — the
first conformation had the backbone in an extended conformation and the second had it in an alpha-
helical conformation. Each of those 2 conformations then had different values for chil, chi2, etc.

We have found that multiple conformation RESP fitting results in fairly robust charges. The
RESP program also allows for specifying additional lagrange constraints so that (e.g.) blocking groups
can be forced to have net neutral charges and molecules can be spliced together more algorithmically.

Pitfalls of ESP-fit charges. In general, standard esp-fit charges perform well at reproducing
desired properties such as DNA base pair, NMA dimer, and methanol-water interaction energies. This
is not always the case, however. For example, Yax Sun in our group calculated ESP charges for a
spherand for the purpose of carrying out free energy perturbation studies to compare the binding of
Li+ and Na+ to the spherand. The spherand looked like this:

Standard ESP charges were calculated from a 3-unit, non-cyclic, methyl-blocked analog. The charges
were then taken from the central residue. The standard ESP fit charges underestimated the interaction
energies between the spherand and the ions. As the charge on the oxygen was on the low side, this

45 ““Atomic Charges for Variable Molecular Conformations,” Reynolds, C. A.; Essex, J. W.; Richards, W. G. J. Am. Chem. Soc., 1992,
114:23,9075-9079.

1/30/113

Appendix D: Charge fitting philosophy Page 297

was thought to be the source of the error. Sun and Kollman then refit the charges, this time with elec-
trostatic potential points within 5 A of the oxygen weighted more heavily than those around the rest of
the molecule. The resulting charges resulted in a relative free energy of binding in much better agree-
ment with experiment.

There also cases where polarization or lone pairs are required to reproduce interaction energies.

Electrostatic potential fit charges also do not always result in good conformational energies. For
example, multiple conformation (C5/aR) RESP charges calculated for glycine and alanine dipeptides
do not result in conformational energies which are in good agreement with the quantum mechanically
calculated values. These charges were derived using the 6-31G* basis set and were applied with a 1-4
electrostatic scale factor of 1/1.2 (Cornell et al. JACS). The reason for this performance is unclear. It
is possible that the 6-31G* charges overstabilize the C7 (7-membered H-bonded ring) conformations.
When these charges are scaled back to gas-phase-like values (q*0.88), the conformational energies
show good agreement with the QM data.

I’ve given 2 examples where esp-fit charges were not able to be applied in a straighforward fash-
ion. Overall, however, we have found these charge models (ESP and RESP) to be quite useful for
modeling biomolecular systems. The alternatives usually involve either (1) models such as Mulliken
charges which do not necessarily reproduce the molecular electrostatic potential or (2) empirically
derived charges such as those fit to reproduce interaction energies and distances (CHARMM) or liquid
properties (OPLS). Because electrostatic potential fit charges can be calculated fairly easily, they
allow the force field to be extended to other molecules. Overall we find them to be a very useful and
relatively general model.

Further Notes on Charge Derivation for the 1994 Force Field

I. Introduction

The 4.1 release of AMBER includes a new parameter file (parm94.dat) and new residue files
(all_nuc94.in, all_amino94.in, all_aminont94.in, and all_aminoct94.in) which contain the parameters
developed for our second generation force field. The new force field employs an approach to atomic
charge fitting which is a modification of the original "standard ESP" (ElectroStatic Potential fit)
approach. The new approach still involves a least squares fit of the atom centered charges so that the
classical potential reproduces the quantum mechanical potential. With the new approach, however,
hyperbolic restraints are applied during the fit to the charges in order to attenuate the charges on buried
atoms which are statistically ill-determined. The new approach is called "RESP," for "Restrained
ElectroStatic Potential fitting."

II. Two-Stage Restrained ESP (RESP) Fitting

The new charge model includes another major modification — a two-stage fit. This approach
allows for the fitting of equivalent charges on certain atoms which are equivalent when the molecule is
freely rotating, but are not equivalent within a static conformation. These equivalent charges are fit
during the second stage of the fit, in the presence of the charges which were determined for the other
atoms during the first stage.

With the previously used standard ESP method, such equivalent atoms were typically averaged
"a posteriori," or after the fit. This approach often resulted in a significant change in the molecular
dipole moment.

Methyl hydrogens are the atoms most typically included in the second stage fit. The methyl car-
bon is included as well in order to provide a sufficient number of degrees of freedom (in this case "1"
since if q(C)= x then q(H)= -x/3).

1/30/113

Appendix D: Charge fitting philosophy Page 298

The need for refitting methyl hydrogens during a second stage fit was made obvious by the
example of methanol. When the three methyl hydrogens were constrained to have the same charge
during a one stage fit, the charge on the oxygen was significantly reduced over its value in an uncon-
strained fit.

The restraint applied during the second stage of the fitting is twice as strong as that applied dur-
ing the first stage (0.0010 vs. 0.0005). The motivation behind this choice was that nonpolar groups
were being refit in the second stage and those atoms should have small charges in order to decrease
their conformational dependence. The more the charges vary with conformation, the more the result-
ing conformational energies are subject to variation. Such behavior is not only undesirable from the
standpoint of general reproducibility of results, but also from the standpoint that any dihedral parame-
ters which are optimized are coupled to the charge set used.

Because the stronger restraint was applied in the second stage, the decision was also made to refit
methylene groups during that stage. Second stage refitting has not been applied to polar atoms, such
as the two oxygens in 1,2-ethane diol which are inequivalent when that molecule is in a conformation
other than the one with highest symmetry (tTt). Similarly, second stage refitting has not been applied
to amino hydrogens. Tests showed that constraining them to have the same charge during the first
stage did not change their value much when compared to an unconstrained fit.

It should be emphasized that the two-stage model as described above is based on refitting only
nonpolar groups during the second stage. In cases where a second stage refitting of polar atoms is
thought to be necessary, then the second stage should also employ the weaker restraint and a third
stage refitting employed with the stronger restraint for nonpolar groups. The best way to determine the
ideal values of nonpolar charges is to carry out a fit with no restraint or with the weak restraint and
with *no* constraints of equivalent atoms.

This new approach is clearly more complicated than the previous charge model and involves
more subjective decisions. We have therefore provided a number of demos which we hope will serve
as useful guides.

III. Multiple Conformation Fitting

Ideally, the new charge model also includes the use of multiple conformations of a given
molecule in the charge fit. The amino acid charges which were derived for the new force field were fit
to two conformations of each amino acid. Specifically, the extended (C5/beta-sheet) and alpha-helical
conformations were applied to the backbones. The side chain torsions were then assigned so that a
given torsion had a different orientation in the extended and in the alpha-helical conformation. This
strategy was based on earlier results obtained with propylamine, which showed that a two-conforma-
tion fit was nearly as good as a five-conformation fit, as long as all of the primary dihedrals were var-
ied between the two conformations. Primary dihedrals can be defined as ones where both terminal
atoms are either heavy atoms or polar hydrogens.

The combined use of two-stage fitting and multiple conformation fitting requires even more deci-
sions in terms of which atoms should be constrained to be equivalent at what times. For the example
of propylamine, the best approach was found to be to constrain all corresponding heavy atoms and the
amino hydrogens to be equivalent between the different conformations in the first stage. The corre-
sponding methyl and methylene atoms were constrained to be equivalent between conformations (for
the carbons and hydrogens) and within conformations (only for the hydrogens) during the second stage
of the fit.

The first stage of the fit then resulted in three different charges for the carbons (C-alpha, C-beta,
and C-gamma) and 7 times the number of different conformations charges for the hydrogens. That is,
every hydrogen was allowed to have a different charge. One common mistake would be simply to

1/30/113

Appendix D: Charge fitting philosophy Page 299

make each atom be equivalent between all conformations, e.g. the first methyl hydrogen across all con-
formations and the second methyl hydrogen across all conformations, etc. However, because the con-
formations are different, there is no reason that individual hydrogens in a methyl group should corre-
spond to individual hydrogens in that same methyl group in a different conformation of the molecule,
based on the numbering.

IV. Conclusion

In summary, the new Two-Stage Multiple conformation RESP charge model has been shown to
perform quite well in the calculation of interaction energies, free energies of solvation, and conforma-
tional energies. The new method involves more subjective decisions than the previously used standard
ESP method, however. When in doubt, it is useful to carry out the charge fit in two or more different
ways, in order to compare the effects of different constraints.

1/30/113

Amber File Specifications

’ AMBER PARAMETER/TOPOLOGY FILE SPECIFICATION

FORMAT(20a4) (ITITL(), i=1,20)

ITITL

: title

FORMAT(12i6) NATOM, NTYPES, NBONH, MBONA, NTHETH, MTHETA,
NPHIH, MPHIA, NHPARM, NPARM, NEXT, NRES,
NBONA, NTHETA, NPHIA, NUMBND, NUMANG, NPTRA,
NATYP, NPHB, IFPERT, NBPER, NGPER, NDPER,
MBPER, MGPER, MDPER, IFBOX, NMXRS, IFCAP

NATOM : total number of atoms

NTYPES : total number of distinct atom types
NBONH : number of bonds containing hydrogen
MBONA : number of bonds not containing hydrogen
NTHETH : number of angles containing hydrogen
MTHETA : number of angles not containing hydrogen

NPHIH
MPHIA

: number of dihedrals containing hydrogen
: number of dihedrals not containing hydrogen

NHPARM : currently not used
NPARM : currently not used

NEXT
NRES

: number of excluded atoms
: number of residues

NBONA : MBONA + number of constraint bonds
NTHETA : MTHETA + number of constraint angles

NPHIA

: MPHIA + number of constraint dihedrals

NUMBND : number of unique bond types
NUMANG : number of unique angle types

NPTRA
NATYP
NPHB

IFPERT :

NBPER
NGPER
NDPER
MBPER
MGPER
MDPER
IFBOX

NMXRS
IFCAP :

FORMAT

: number of unique dihedral types
: number of atom types in parameter file, see SOLTY below
: number of distinct 10-12 hydrogen bond pair types
set to 1 if perturbation info is to be read in
: number of bonds to be perturbed
: number of angles to be perturbed
: number of dihedrals to be perturbed
: number of bonds with atoms completely in perturbed group
: number of angles with atoms completely in perturbed group
: number of dihedrals with atoms completely in perturbed groups
: set to 1 if standard periodic box, 2 when truncated octahedral
: number of atoms in the largest residue
set to 1 if the CAP option from edit was specified

(20a4) (IGRAPH(i), i=1 NATOM)

IGRAPH : the user atoms names

1/30/113

Page 300

Amber File Specifications Page 301

FORMAT(5E16.8) (CHRG(i), i=1,NATOM)

CHRG : the atom charges. (Divide by 18.2223 to convert to kcals/mol)
FORMAT(5E16.8) (AMASS(i), i=1,NATOM)

AMASS : the atom masses
FORMAT(1216) (IAC(), i=1,NATOM)

IAC :index for the atom types involved in Lennard Jones (6-12)
interactions. See ICO below.

FORMAT(1216) (NUMEX(), i=1 NATOM)

NUMEX : total number of excluded atoms for atom "i". See
NATEX below.

FORMAT(1216) (ICO(i), i=1, NTYPES*NTYPES)

ICO : provides the index to the nonbon parameter
arrays CN1, CN2 and ASOL, BSOL. All possible 6-12
or 10-12 atoms type interactions are represented.
NOTE: A particular atom type can have either a 10-12
or a 6-12 interaction, but not both. The index is
calculated as follows:

index = ICONTYPES*IAC(i)-14+IAC(j)

If index is positive, this is an index into the
6-12 parameter arrays (CN1 and CN2) otherwise it
is an index into the 10-12 parameter arrays (ASOL
and BSOL).

FORMAT(20A4) (LABRES(1), i=1,NRES)
LABRES : the residue labels
FORMAT(1216) (IPRES(i), i=1,NRES)

nn

IPRES : atoms in each residue are listed for atom "i" in
IPRES(i) to IPRES(i+1)-1

FORMAT(5E16.8) (RK(i), i=1,NUMBND)
RK : force constant for the bonds of each type, kcal/mol
FORMAT(5E16.8) (RK(i), i=1, NUMBND)

REQ : equilibrium bond length for the bonds of each type, angstroms

1/30/113

Amber File Specifications Page 302

FORMAT(SE16.8) (RK(i), i=1, NUMANG)

TK : force constant for the angles of each type, kcal/mol A**2
FORMAT(SE16.8) (RK(i), i=1, NUMANG)

TEQ : the equilibrium angle for the angles of each type, degrees
FORMAT(5E16.8) (RK(i),i=1,NPTRA)

PK : force constant for the dihedrals of each type, kcal/mol
FORMAT(5E16.8) (RK(i),i=1,NPTRA)

PN : periodicity of the dihedral of a given type
FORMAT(5E16.8) (RK(i),i=1,NPTRA)

PHASE : phase of the dihedral of a given type
FORMAT(5E16.8) (SOLTY(), i=1,NATYP)

SOLTY : currently unused (reserved for future use)
FORMAT(5E16.8) (CN1(i), i=1 NTYPES*(NTYPES+1)/2)

CN1 :Lennard Jones r**12 terms for all possible atom type
interactions, indexed by ICO and IAC; for atom i and j
where i < j, the index into this array is as follows
(assuming in index is positive):
CN1JICO(NTYPES*IAC()-1+IAC()))).

FORMAT(5E16.8) (CN2(i),i=1 NTYPES*(NTYPES+1)/2)

CN2 :Lennard Jones r**6 terms for all possible atom type
interactions. Indexed like CN1 above.

NOTE: the atom numbers in the arrays which follow that describe bonds,
angles, and dihedrals are obfuscated by the following formula (for
runtime speed in indexing arrays). The true atom number equals the
absolute value of the number divided by three, plus one. In the case

of the dihedrals, if the third atom is negative, this implies an

improper torsion and if the fourth atom is negative, this implies that

end group interactions are to be ignored. End group interactions are
ignored, for example, in dihedrals of various ring systems (to prevent
double counting) and in multiterm dihedrals.

FORMAT(1216) (IBH(i),JBH(i),ICBH(i), i=1, NBONH)

1/30/113

Amber File Specifications Page 303

IBH : atom involved in bond "i", bond contains hydrogen
JBH : atom involved in bond "i", bond contains hydrogen
ICBH : index into parameter arrays RK and REQ

FORMAT(1216) (IB(i)JB(i),ICB(i), i=] NBONA)

IB :atom involved in bond "i", bond does not contain hydrogen
JB :atom involved in bond "i", bond does not contain hydrogen
ICB :index into parameter arrays RK and REQ

FORMAT(1216) (ITH(i),JTH(i),KTH(@),ICTH(), i=] NTHETH)

ITH :atom involved in angle "i", angle contains hydrogen

JTH :atom involved in angle "i", angle contains hydrogen

KTH :atom involved in angle "i", angle contains hydrogen

ICTH : index into parameter arrays TK and TEQ for angle
ITH(1)-JTH(1)-KTH(i)

FORMAT(1216) (IT(i)JT(i),KT(i),ICT(i), i=1 NTHETA)

IT :atom involved in angle "i", angle does not contain hydrogen

JT :atom involved in angle "i", angle does not contain hydrogen

KT :atom involved in angle "i", angle does not contain hydrogen

ICT :index into parameter arrays TK and TEQ for angle
ITG)-JT(G)-KT()

FORMAT(1216) (IPH(i)JPH(i),KPH(i),LPH(i),ICPH(i), i=1,NPHIH)

IPH :atom involved in dihedral "i", dihedral contains hydrogen

JPH :atom involved in dihedral "i", dihedral contains hydrogen

KPH : atom involved in dihedral "i", dihedral contains hydrogen

LPH : atom involved in dihedral "i", dihedral contains hydrogen

ICPH : index into parameter arrays PK, PN, and PHASE for
dihedral IPH(i)-JPH(i)-KPH(i)-LPH(i)

FORMAT(1216) (IP(i)JP(i),KP(i),LP(i).ICP(i), i=1 NPHIA)

IP :atom involved in dihedral "i", dihedral contains hydrogen
JP :atom involved in dihedral "i", dihedral contains hydrogen
KP :atom involved in dihedral "i", dihedral contains hydrogen
LP :atom involved in dihedral "i", dihedral contains hydrogen
ICP :index into parameter arrays PK, PN, and PHASE for
dihedral IPH(i)-JPH(i)-KPH(i)-LPH(i). Note, if the
periodicity is negative, this implies the following entry
in the PK, PN, and PHASE arrays is another term in a
multitermed dihedral.

FORMAT(1216) (NATEX(i), i=1 NEXT)

1/30/113

Amber File Specifications

NATEX : the excluded atom list. To get the excluded list for atom
"i" you need to traverse the NUMEX list, adding up all
the previous NUMEX values, since NUMEX(i) holds the number
of excluded atoms for atom "i", not the index into the
NATEX list. Let IEXCL = SUM(NUMEX(j), j=1.i-1), then
excluded atoms are NATEX(IEXCL) to NATEX(IEXCL+NUMEX()).

FORMAT(5E16.8) (ASOL(i),i=1,NPHB)
ASOL : the value for the r**12 term for hydrogen bonds of all
possible types. Index into these arrays is equivalent
to the CN1 and CN2 arrays, however the index is negative.
For example, for atoms i and j, with i < j, the index is
-(NTYPES*IAC(i)-1+IAC(j)).
FORMAT(5E16.8) (BSOL(i),i=1,NPHB)

BSOL : the value for the r**10 term for hydrogen bonds of all
possible types. Indexed like ASOL.

FORMAT(5E16.8) (HBCUT(), i=1,NPHB)
HBCUT : no longer in use
FORMAT(20A4) (ISYMBL(), i=1,NATOM)
ISYMBL : the AMBER atom types for each atom
FORMAT(20A4) (ITREE(), i=1,NATOM)
ITREE : the list of tree joining information, classified into five
types. M -- main chain, S -- side chain, B -- branch point,
3 -- branch into three chains, E -- end of the chain

FORMAT(1216) (JOIN(), i=I NATOM)

JOIN : tree joining information, potentially used in ancient
analysis programs. Currently unused in sander or gibbs.

FORMAT(1216) (IROTAT(i),i= 1, NATOM)
IROTAT : apparently the last atom that would move if atom i was
rotated, however the meaning has been lost over time.
Currently unused in sander or gibbs.

##%* The following are only present if IFBOX .gt. Q *#*%%*

FORMAT(1216) IPTRES, NSPN, NSPSOL

1/30/113

Page 304

Amber File Specifications Page 305

IPTRES : final residue that is considered part of the solute,
reset in sander and gibbs

NSPM : total number of molecules

NSPSOL : the first solvent "molecule"

FORMAT(1216) (NSP(i), i=1 NSPM)

NSP : the total number of atoms in each molecule,
necessary to correctly determine the pressure scaling

FORMAT(5E16.8) BETA, BOX(1), BOX(2), BOX(3)
BETA : periodic box, angle between the XY and YZ planes in
degrees.
BOX : the periodic box lengths in the X, Y, and Z directions
##%% The following are only present if IFCAP .gt. O ****

FORMAT(1216) NATCAP

NATCAP : last atom before the start of the cap of waters
placed by edit

FORMAT(5E16.8) CUTCAP, XCAP, YCAP, ZCAP

CUTCAP : the distance from the center of the cap to the outside
XCAP : X coordinate for the center of the cap
YCAP :Y coordinate for the center of the cap
ZCAP :Z coordinate for the center of the cap

##%% The following are only present if IFPERT .gt. O #**%#*

Note that the initial state, or equivalently the prep/link/edit state,
is represented by lambda=1 and the perturbed state, or final
state specified in parm, is the lambda=0 state.

FORMAT(1216) (IBPER(i), JBPER(i), i=I NBPER)

IBPER : atoms involved in perturbed bonds
JBPER : atoms involved in perturbed bonds

FORMAT(1216) (ICBPERG(), i=1,2*NBPER)
ICBPER : pointer into the bond parameter arrays RK and REQ for the
perturbed bonds. ICBPER(i) represents lambda=1 and
ICBPER(i+NBPER) represents lambda=0.

FORMAT(1216) (ITPER()), JTPER(), KTPER(), i=] NGPER)

1/30/113

Amber File Specifications

IPTER : atoms involved in perturbed angles

JTPER : atoms involved in perturbed angles

KTPER : atoms involved in perturbed angles

FORMAT(1216) (ICTPER(i), i=1,2*NGPER)

ICTPER : pointer into the angle parameter arrays TK and TEQ for
the perturbed angles. ICTPER(i) represents lambda=0 and
ICTPER(i+NGPER) represents lambda=1.

FORMAT(1216) (IPPER(i), JPPER(i), KPPER(i), LPPER(), i=1 NDPER)

IPTER : atoms involved in perturbed dihedrals

JPPER : atoms involved in perturbed dihedrals

KPPER : atoms involved in perturbed dihedrals

LPPER : atoms involved in pertrubed dihedrals

FORMAT(1216) (ICPPER(i), i=1,2*NDPER)

ICPPER : pointer into the dihedral parameter arrays PK, PN and
PHASE for the perturbed dihedrals. ICPPER(i) represents
lambda=1 and ICPPER(i+NGPER) represents lambda=0.

FORMAT(20A4) (LABRES(i), i=1,NRES)

LABRES : residue names at lambda=0
FORMAT(20A4) (IGRPER(), i=1,NATOM)

IGRPER : atomic names at lambda=0
FORMAT(20A4) (ISMPER(i), i=1,NATOM)

ISMPER : atomic symbols at lambda=0
FORMAT(5E16.8) (ALMPER(i), i=1,NATOM)

ALMPER : unused currently in gibbs
FORMAT(1216) (IAPER(i), i=1,NATOM)

IAPER : IAPER() = 1 if the atom is being perturbed
FORMAT(1216) (IACPER(), i=1,NATOM)

TACPER : index for the atom types involved in Lennard Jones

interactions at lambda=0. Similar to IAC above.
See ICO above.

1/30/113

Page 306

Amber File Specifications Page 307

FORMAT(5E16.8) (CGPER(), i=1,NATOM)
CGPER : atomic charges at lambda=0
##%% The following is only present if [IPOL .eq. 1 ***
FORMAT(5E18.8) (ATPOL(i), i=1,NATOM)
ATPOL : atomic polarizabilities
##%% The following is only present if IPOL .eq. 1 .and. IFPERT .eq. 1 ****
FORMAT(5E18.8) (ATPOL1(i), i=1, NATOM)

ATPOLL1 : atomic polarizabilities at lambda = 1 (above is at lambda = 0)

’ AMBER RESTART FILE SPECIFICATION

FORMAT(20A4) ITITL

ITITL : the title of the current run, from the AMBER
parameter/topology file

FORMAT(I5,5E15.7) NATOM,TIME

NATOM : total number of atoms in coordinate file
TIME : option, current time in the simulation (picoseconds)

FORMAT(6F12.7) (X(i), Y(i), Z(i),i = 1, NATOM)
X.,Y,Z : coordinates
IF dynamics:
FORMAT(6F12.7) (VX(i), VY(i), VZ(i),i = 1, NATOM)
VX,VY,VZ : velocities
IF periodic box [4.0 and previous: only if constant pressure]:
FORMAT(6F12.7) BOX(1), BOX(2), BOX(3)

BOX : size of the periodic box

1/30/113

Amber File Specifications Page 308

Note: in AMBER 4.1 if the ewald option is turned on, the box angles will also be written out in the
same format.

GIBBS will print extra information.

’ AMBER AMBER TRAJECTORY (COORDINATES OR VELOCITY) FILE SPECIFICATION

FORMAT(20A4) ITITL

ITITL : the title of the current run, from the AMBER
parameter/topology file

The following is sequentially dropped for each snapshot of the trajectory:
FORMAT(10F8.3) (X(), Y(i), Z(i), i=1 NATOM)

X.,Y,Z : coordinates or velocities
IF periodic box [4.0 and previous: only if constant pressure]:
FORMAT(10F8.3) BOX(1), BOX(2), BOX(3)

BOX : size of periodic box

1/30/113

Release Notes for Amber 4.1 Page 309

Amber 4.1 Release Notes

(Differences Between Amber 4.1 and Amber 4.0)

The information in this section is mainly of interest to those who have used previous versions of
Amber. The current section describes changes between Amber 4.0 and Amber 4.1, and the following
sections contain similar descriptions of changes introduced with earlier releases.

World Wide Web Page:

A series of web pages has been created for Amber: this contains bugfixes, discussions of issues
relevant to molecular mechanics, documentation, information on obtaining Amber, and more. See

http://www.amber.ucsf.edu/amber/amber.html

Unix Release:

The user’s installation procedure has been simplified slightly by the elimination of the src/make-
make script; when building in the src/ tree, Makefiles now figure out the system-specific directory to
use rather than needing makemake to edit them. See src/OREADME for more detailed notes of
changes in code and compilation.

The tests can be run using *'make’, thanks to a Makefile in the test/ directory.

Documentation:

The manual has been reorganized somewhat, and the readability of the ascii .doc files has been
improved with the help of GNU utilities. A new amber41/Questions subtree has been added, which is
a somewhat informal compendium of answers to users’ questions and (in amber41/Questions/ONet/)
general discussions of modeling issues from a variety of sources. These are also to be found under the
Web page.

Manuals have been added for the new programs SPASMS, LEaP and Interface, and are included
in two new bound volumes. The LEaP and Interface manuals are in amber41/leap/doc/ and
amber41/interface/doc/. The SPASMS manual is in .doc form in amber41/doc/ and in Rich Text For-
mat (RTF) form (which should be accessible to newer word processors such as Word) in
amber41/doc/spasms/. Postscript files will be included if a way of generating them can be found (MS
Word generates huge ones that don’t always print).

Benchmarks:

A special bench/ directory has been added with scripts for running benchmarks and collating the
results.

Database:

The C-shell files for building the residue database under Unix have been replaced by a Makefile.

1/30/113

Release Notes for Amber 4.1 Page 310

There is a new force field which is particularly adapted for solvated systems, primarily involving
a new charge-calculation scheme in conjunction with the 6-31G* quantum mechanical basis set. This
is described in detail in the Database section of the manual. Operational differences include the use of
a factor of 1.2 for scaling electrostatic interactions (SCEE; 2.0 is used with the old force field) and new
names for the nucleic acid residues, eliminating separate HB, HE and POM (terminal hydrogen and
phosphate) residues. The new residues are described in the LINK section of the manual. The files for
the new database are db94 .dat (for link) and parm94 .dat (for parm).

Tutorials:

A fairly extensive tutorial on plastocyanin has been added.

LEaP:

A new package called LEaP has been added, written by Christian Schafmeister and fixed and
extended by Bill Ross and Vladimir Romanovski. It provides an alternative to the combination of
prep, link, edit and parm; x/eap includes a graphical molecular editor that runs on any X-windows plat-
form, and fleap provides a simple command-line interface to most of the functionality. LEaP has its
own special installation procedure and manuals, and is found in amber41/leap/.

Interface:

A new program called Interface has been added, written by David Pearlman. It provides a front-
end scripting language to simplify decisions on sander and gibbs input and to replace shell scripts for
running the programs. It has an independent tree under amber4 1/interface/ with its own special instal-
lation procedure and manuals.

Resp:

This is the new program for fitting atomic charges to reproduce an electrostatic potential. It is
derived from a program ESPFIT originally written by U. Chandra Singh and Peter Kollman. The cur-
rent version adds restraint methods for holding the point charges relatively neutral and fitting across
multiple conformations, and was written by Christopher Bayly (now at Merck Frosst Canada).

Link:

The ICONN option for linking molecules has been disabled since it was discovered that torsions
were not placed on the linking bond. The crosslink mechanism can be used for this function.

Edit:

When adding a box trimmed to a certain distance from a molecule, 0.4 A clearance is now added
at the box boundary to prevent close water-water contacts, since Edit does not check for them. This
decreases the possibility of shake failure at minimization or dynamics startup.

User-defined solvents may now be added. The OCT option has been added to generate water
boxes with truncated octahedral boundaries, courtesy of Thomas Huber of Ludwig Maximilian Univer-
sitaet, Muenchen. If periodic boundaries are used in sander, etc., the “oct box’ is automatically

1/30/113

Release Notes for Amber 4.1 Page 311

detected and used. Input checking has been added so bad input in edit.in is no longer skipped when
reading options.

Parm:

Input checking has been added so that keyword fields in parm.in must be all blank if no keyword
is used.

Minmd:

This program has been eliminated and its polarization force field option moved to Sander.

Sander:

Some defaults have changed: IDIEL = 1 (no longer distance dependent dielectric). CUT is now
8.0 A instead of 9.0 A. SCEE no longer has a default value since the new force field requires 1.2
while the old one used 2.0.

The mden file is now in table format, with all the numbers for each step in a single row and some
number of spaces between each number. The first line no longer has the title of the run; instead it is a
list of names for the columns.

An optional secondary cutoff has been added. A fast Ewald sum method has been contributed.
Fast routines for intra- and inter-water potentials have been introduced, for a speedup of e.g. 40% on
2466 waters and 284 solute atoms in a constant volume box with 8 A cutoff. Sander has been paral-
lelized for shared memory and message-passing architectures (see scc/OREADME .parallel).

The box coordinates are now output in the mderd and restrt coordinate files when using constant
volume, as has always been done for constant pressure. Handling of boxes with truncated octahedral
boundaries has been added. If periodic boundaries are used, the box type from EDIT is automatically
detected and used. Polarization has been added. The input description in the sander manual has been
rearranged from the original arbitrary, somewhat unordered grouping of variables in IBM “card’ fash-
ion to a more logical grouping by function.

Spasms:

This is a completely new molecular mechanics/dynamics program contributed by David C.
Spellmeyer (Chiron Corporation), William C. Swope (IBM Research), Erik-Robert Evensen (Dept.
Chemistry, Harvard University), and David M. Ferguson (University of Minnesota), with major contri-
butions from Shuichi Miyamoto, Thomas Cheatham and Randall Radmer (code development) and
Allison Howard (documentation). Principal investigators from UCSF are Peter A. Kollman and Robert
Langridge.

The spasms directory is organized differently from the other Amber source directories, in that the
“real’ source is kept in files with the .msk extension, which are designed to be preprocessed by the
spasms/util/lunmask program into machine-specific .f files, which can then be compiled. This enables
source for different machines to be easily generated from a non-Unix platform. (The other Amber pro-
grams use the more flexible but Unix-only cpp program for generating source for arbitrary platforms.)
See src/spasms/OREADME for further details.

1/30/113

Release Notes for Amber 4.1 Page 312

The spasms manual is provided in electronic form in RTF format, which is suitable for viewing
and printing with editors such as Word.

Gibbs:

Some defaults have changed: IDIEL = 1 (no longer distance dependent dielectric). SCEE no
longer has a default since the new force field requires 1.2 (the old one uses 2.0).

A full implementation of Thermodynamic Integration is provided, a polarization potential is
included, and free energy derivatives and components may be calculated. An optional secondary cut-
off has been added, as well as fast routines for intra- and inter-water potentials. Gibbs has been paral-
lelized for shared memory and message-passing architectures (see scc/OREADME .parallel).

The mden file is now in table format, with all the numbers for each step in a single row and some
number of spaces between each number. The first line no longer has the title of the run; instead it is a
list of names for the columns.

Carnal:

Carnal is a new coordinate/trajectory analysis program, written by Bill Ross. It will eventually
replace mdanal (and possibly anal), so we recommend using it instead of mdanal whenever possible.
Bugs in mdanal will not be fixed, while bugs in carnal will. Carnal is the first Amber program to be
written in C, and as such has the distinction of not being statically dimensioned, so recompilation for
larger problems is not required.

Since in 4.1 periodic box coordinates are written to mdcrd files during constant volume simula-
tions, the STREAM BOX option has been deleted and the assumption is made that a box is present in
the mdcrd files if one is indicated in the prmtop file; if using an old 4.0 constant volume trajectory, use
NOBOX to force carnal to use the box from prmtop. (When the box is read from an mdcrd file, the line
is checked to verify that only 3 numbers are on it.)

Rdis:

Rdis calculates distributions of measurements, including density-normalized distributions around
a point.

Curvop:

Curvop performs pointwise subtraction, averaging, addition, multiplication and division of pairs
of curves.

Curvemax:

Curvemax prints the x,y values at the cumulative maximum of a table of x,y values.

Protonate:

Protonate adds protons to protein or DNA heavy atoms, converts proton names between various
conventions, and checks (pro)-chirality.

1/30/113

Release Notes for Amber 4.1 Page 313

Gwh:

Gwh (Generate Water Hydrogens) sets positions of water hydrogens onto water oxygen positions
that may be present in PDB files by optimizing simple electrostatic interactions.

Pol_H:

Pol_H resets positions of polar hydrogens of protein residues (Lys, Ser, Tyr and Thr) by optimiz-
ing simple electrostatic interactions.

Ambpdb:

Ambpdb converts restrt files to various formats: PDB, Don Bashford’s MEAD program, Mike
Connolly’s surface area/volume programs, and Mike Pique’s FLEX program.

Rdparm:
Rdparm displays and modifies the contents of parm topology files.

Pdbconvert:

Pdbconvert changes PDB residue naming conventions for nucleic acids from the old force field
format to the new one.

Other programs:

Pdbgen has been modified to allow command-line arguments. Geom has corrected dihedral mea-
surements.

Benchmarks:

The DNA cpu performance benchmarks have been moved from demo/dna/ to amber41/bench/
and a plastocyanin benchmark has been added.

1/30/113

Release Notes for Amber 4.0 Page 314

Amber 4.0 Release Notes

(Specific Differences Between Amber 4.0 and Amber 3.0 Rev A)

Unix Release:

More extensive use is made of the Unix environment, including the use of make(1) and shell
scripts. The .com extension for scripts has been replaced by .csh for C-shell scripts and .com is now
used only for VMS scripts. OREADME files have been put in various directories explaining the con-
tents. More extensive facilities are provided for generating source code for different target machines,
with single- and multiple-file options. All the programs except those in the etc directory now return
exit status of 1 in case of error and O otherwise. The demo and test scripts take advantage of this fea-
ture, which should aid in writing batch job scripts and in integrating Amber into larger systems. The
demo directories have been reorganized, and demo file names have been changed to simplify porting
them to a flat file system. The scripts for running the tests now print fewer extraneous non-numeric
diffs.

Database:

The all-atom protein data base now uses IUPAC-IUB names for hydrogens (and, indeed, for all
atoms.) One exception is for the 2’ hydroxyl proton on ribose: the IUPAC-IUB document says that
this should be named "O2’H", making it unique in being a proton whose name does not begin with
"H". Since many parts of AMBER identify protons on the basis of the first letter of the name, we have
deviated from the JTUPAC-IUB standard, and called this proton "HO2’". All we can say is that we
hope this doesn’t cause too much trouble.

Different people interpret the IUPAC-IUB rules for proton names in amino acids in different
ways; in our convention, the beta-methylene protons on most residues are labeled "HB2" and "HB3",
with equivalent rules for other methylenes. Edit the all.in, allnt.in and allct.in files in the /dat direc-
tory if you want to change this convention. Note in particular that Brookhaven labels beta-methylene
protons (for example) as "IHB" and "2HB", with the comment that these names are to be interpreted
as "HB1" and "HB2". Names in pdb files like "IHB" will be converted by Amber into "HB1" for
internal use, but the "1" and "2" will not be translated to "2" and "3". [In particular, Amber 4.0 reads
in pdb files with the following conventions: spaces in Col. 13 are stripped away, in effect left-justifying
atom names; if a "1", "2" or "3" appears in column 13, it is rotated around to the end of the name. If
this process does not do what you want it to do, you could modify the "pdbrd.f" file in ../src/edit, or
manually edit your pdb file.]

When outputting pdb files, Amber4 re-wraps the proton atom names in a way that is consistent
with Brookhaven usage. Again, however, if the default Amber proton names (like "HB2" and HB3")
are used, they will be converted to "2HB" and "3HB", but the "2" and "3" will not be translated into
n 1 n and l|2|| .

In addition to the standard charges, an "alternate" data base is supplied in which the charges on
lys, arg, asp and glu are reduced to +/- 0.2; such reductions are often used in carrying out nmr refine-
ments in vacuum, or for other vacuum calculations where a simple way of screening charged side
chains may be desirable.

The parm89a.dat file the Amber3a version has been changed slightly by making the force con-
stant for the LP-S-LP angle be 150. rather than zero. Problems were occasionally found with lone-pair
geometries using the earlier value. The new force field is called parm91.dat. The older version is also

1/30/113

Release Notes for Amber 4.0 Page 315

on the distribution tape for backwards compatibility.

For alkali ions with explicit waters, we have provided the latest values of Aqvist 4 which are
adjusted to reproduce the ion-OW potential using the Amber combining rules in order to reproduce the
first peaks of the radial distribution and the relative free energies of solvation in water of the various
ions. See dat/OREADME for more details.

Source code:

All common blocks have been aligned on double word boundaries to avoid compiler warnings
and to accommodate compilers that do not provide padding.

Link:

The specification of the database has been moved from inside the link.in file to a ’—p’ argument
(Unix) or unit 1 file assignment (VMS). The old database specification in line 2 of link.in is read but
ignored.

Edit:

The pdbrd subroutine has been modified to read in the funny Brookhaven proton names as
described above.

Parm:

In a major change, parm can now read a second force field file, frcmod, which is used to specify
substitute or additional parameters for a particular project. The standard Amber parameters are
intended to reside in the old frcfld file, which can be treated as a shared, "read-only" standard database.
This is backward compatible since the feature need not be used.

The parm program can also now read in polarizability data. There is a possibility of non-back-
wards compatibility here: sometimes comments have been placed in the section of old parm files
where the new polarizabilities are now input; these should be very easy to fix. Note that no polarizabil-
ity parameters are supplied, since this feature is still in development.

Min/md:

The functionality of the old min and md programs has now been merged into a single program,
minmd. Force fields that make use of dipole polarizabilities may now be used. For more details, see
the appropriate input section, below.

A long-standing scaling bug in the use of the TAUTP and TAUP parameters in the md module
has been fixed, so that the new versions work as described by Berendsen et al.. NOTE: to compare 4.0
MD runs to amber3A runs you must multiply TAUTP, and TAUP by 20.455 in the amber3A run. In
addition, new temperature scaling options are available which allow the solvent and solute to be sepa-
rately coupled to the temperature bath (i.e. the TAUTS switch is now active).

46 3, Aqvist, J. Phys. Chem. 1990, 94, 8021-8024.

1/30/113

Release Notes for Amber 4.0 Page 316

Gibbs:

Major changes include: the incorporation of dynamically modified windows; 47 the ability to
carry out Potential of Mean Force (PMF) simulations using holonomic constraints; the ability to
include the "PMF bond correction" 48 when calculating free energies; the ability to carry out thermo-
dynamic integration (TI) calculations; improved initial state/final state mixing rules; the inclusion of
several new temperature coupling options; perturbations where non-bonded interactions are repre-
sented as a hydrogen bond (10-12) in the initial and/or final state are now handled correctly; double-
wide sampling can be turned off; a new succinct free energy vs. window summary file can be written;
periodic imaging can be performed on a residue basis; intra-perturbed group contributions can option-
ally be calculated; if SHAKE fails, a restart file and an attempted continuation can be requested; some
of the formatted output has been clarified and reformatted; several bug fixes (including the
TAUTP/TAUTS/TAUP bug mentioned above) have been incorporated; code clean-up and documenta-
tion.

This program is a major change from the previous versions of Gibbs. Gibbs version 4.0 is a
descendent of Gibbs version 3.0 (not version 3A), so some of the comments in the 3A release notes (in
particular regarding common libraries, 16 bit integers, and some vectorization) do not apply to version
4.0.

Sander:

This is a completely new module for carrying out minimization and dynamics, which makes
available many interesting features for carrying out refinements of solution structures of macro-
molecules based on magnetic resonance data, and for general conformational searching. In addition to
allowing a flexible description of distance, bond angle, and torsional restraints, the module gives the
user control over the weights associated with these penalty functions, and over the van der Waals por-
tion of the underlying force field. The user can straightforwardly "program" a simulation to change
the nature of the restraints, the target temperature, etc., as many times as is desired, all within a single
run. In addition, calculations based on relaxation matrix estimates of NOESY intensities, 4° and chem-
ical shifts, 50 are available. And time-averaged restraints, >! can be easily applied.

Nmode:

This is a thorough revision of the previous nmode module. Major additions include the ability to
compute "Langevin modes" (normal modes in the presence of viscous damping from a continuum sol-
vent), 72 and to find transition states as well as minima. 3 The associated modules nmanal and Imanal
(new in this release) are analysis programs for normal modes and Langevin modes, respectively. They
calculate atomic fluctuations in Cartesian and internal coordinates, plus a variety of time-correlation

47D.A. Pearlman and P.A. Kollman, J. Chem. Phys. 1989, 90, 2460.
48 D.A. Pearlman and P.A. Kollman, J. Chem. Phys. 1991, 94, 4532.
49 P, Yip and D.A. Case, J. Magn. Res. 1989, 83, 643.

50 G.P. Gippert, PF. Yip, PE. Wright and D.A. Case, Biochem. Pharm.1990, 40, 15; K.J. Cross and PE. Wright, J. Magn. Res. 1985,
64, 220.

51 A E. Torda, R M. Scheek and W.F. van Gunsteren, J. Mol. Biol. 1990, 214, 223; D.A. Pearlman and P.A. Kollman, J. Mol. Biol.
1991,220,457.

52 G.Lamm and A. Szabo, J. Chem. Phys. 1986, 85, 7334; J. Kottalam and D.A. Case, Biopolymers 1990, 29, 1409.
53 D.T. Nguyen and D.A. Case, J. Phys. Chem. 1985, 89, 4020.

1/30/113

Release Notes for Amber 4.0 Page 317

functions of relevance to magnetic resonance relaxation and fluorescence anisotropy decay.

1/30/113

Release Notes for Amber 3.0 Rev A Page 318

Amber 3.0 Rev A Release Notes

(Differences Between Amber 3.0 and Rev A)
by George Seibel

Database:

The entire database has been examined. The error-prone CHARGE keyword method of assign-
ing charges was abandoned in favor of a more reliable method. Atom names of C-terminal charged
amino acids have been changed to the PDB standard O’ and ’OXT’ in both the united and all atom
files. Previously these were ’O1’ and ’O2’ in uni.in, and ’OA’ and OB’ in all.in. Inconsistent SG-LP
bond lengths were fixed in all files. Other than this, geometries are unchanged, although some
residues are far from their minimum energy conformations.

A number of errors in the 3.0 database have been fixed:

all.in: RPOM charges, RURA connectivity.
allct.in: GLN, HIP, and GLU charges, planarity constraints
on carbonyls, all residues.
allnt.in: no errors.
uni.in: no errors.
unict.in: Carboxy oxygen atom types changed to 02, all residues
unint.in: PRO charges.
opls_uni.in: no errors.
opls_unict.in: Carbonyl planarity constraints, all residues. Charges
and Carboxy oxygen atom types: ARG, HID, HIE, TRP.
opls_unint.in: no errors.

Force Field Parameter Files

All parameter files distributed with Amber 3.0 are provided unchanged. In addition, a new
parameter file, parm89a.dat, is provided. This is a modification of the 3.0 parmallhb.dat file, with the
following changes: TIP3P atom type HW has been corrected to have 6-12 coefficients of zero. Masses
of hydrogens have been changed from 3.0 to 1.008, and the mass of the LP (sulfur lone pair) has been
reduced from 12.0 to 3.0. Angle bending force constants for some angles involving the LP (lone pair)
atom type have been modified. The previous force constants were an order of magnitude larger than
normal bending force constants, and resulted in erratic (sometimes catastrophic) behavior in minimiza-
tion and md. The new force constants have been softened, and behave much better. Energetic and
structural results related to the LP force constants are not significantly changed. All parameter
changes are documented in the file readme.parm in the database directory.

Prep:

Installed portable file handling scheme with Unix command line interface, configurable for JCL
file assignment. Rewrote subroutine OPENDA for portability. Added partial bounds violation protec-
tion. Fixed bug that resulted in garbage and/or wrong dihedrals on unit 6 output. Changed internal
variables in TORS and BANGLE to double precision for consistent output on different machines.
Removed bogus args from call to BONDFM. Fixed bound violation problem in BONDFM. Removed
illegal status keyword in CLOSDA. Fixed incorrect args to COORD in GETMOL. Removed dead

1/30/113

Release Notes for Amber 3.0 Rev A Page 319

code, cleaned up some questionable syntax. Fixed array arg dimensions so bounds checker could be
used, ran tests with compiler bounds checking enabled.

Link:

Parameterization of all arrays. Added array bounds protection on all arrays. These changes
allow Link to be easily and safely redimensioned to run on small memory machines. File handling
largely replaced by a more portable scheme with Unix command-line interface, configurable for JCL
file assignment. Rewrote OPENDA and APPEND in standard Fortran 77 for machine independence.
Fixed illegal initializations of data in commons. Fixed uninitialized INDX in WRITEO and IOUT in
FINDRS. Fixed error in common/IOFILE/, daf routines. Removed unused common blocks. Cleaned
up output a bit. Removed cryptic messages for dangling improper dihedral removal that looked like
error output, but were in fact normal behavior. Removed dead code, cleaned up some questionable
syntax. Fixed array arg dimensions so bounds checker could be used, ran tests with compiler bounds
checking enabled.

Edit:

Parameterization and bounds protection for all arrays. Replaced hardcoded limits with appropri-
ate parameters. Removed machine dependencies and installed a portable file handling scheme with
Unix command line interface, configurable for JCL file assignment. Removed broken pdb matching
options, fixed iopt=1 XRAY option to work as it has been documented for years. (ie, read AND write
a PDB file) Wrote new pdb reading routine to read real PDB files, as well as maintaining backwards
compatibility with old "Amber" PDB files. Note that we now use a 3 character residue name, as per
PDB standard. Fixed XRAY to stop if PDB sequence doesn’t match LINK sequence, instead of gener-
ating garbage. Added user warnings if generic PDB residues matched to CYX/HIP/HIE/HID.
Cleaned up and improved output. Removed undocumented hack that turned off H addition if extended
precision XRAY output used. Replaced PGFIND and RSFIND with library routines FINDP and
FINDRS. Removed unused 42000 word array in common/corsol. Fixed uninitialized variables in
WRITEO, WSOL and BSOL. Added new routine to print the five longest bonds in the system at the
end of each run. This will reveal the most common errors that are typically made in Edit, but not
revealed until energy calculations are started. Removed dead code, cleaned up some questionable syn-
tax. Changed array dimensioning conventions so bounds checker could be used, and ran tests with
compiler bounds checking enabled.

Parm:

Parameterization and bounds protection for all arrays. Replaced hardcoded limits with appropri-
ate parameters. Removed machine dependencies in BONSEP, ANGSEP, DIHSEP, and RFREE, and
installed a portable file handling scheme with Unix command line interface, configurable for JCL file
assignment. Major improvement in user output. Made all internal parameter manipulations double
precision to help get the same answers on all machines. Fixed equivalencing scheme for H-valence
terms to make safe redimensioning possible. Made RCONST more robust. Fixed divide-by-zero bugs
encountered with dummy R* or AC parameters. Removed dead code, cleaned up some questionable
syntax. Array dimensioning conventions have been fixed so bounds checker could be used, and tests
have been run with compiler bounds checking enabled. Rev A PARM generates a "scalar" topology
file, ie it does not duplicate dihedral pointers for dihedrals with multiple fourier terms. This topology
file is appropriate for all Rev A programs.

1/30/113

Release Notes for Amber 3.0 Rev A Page 320

Min:

Amber 3.0 contained two energy minimizers, BORN for Cray machines and MIN for the
FPS264 and VAX/VMS machines. These programs differed slightly in input and in the handling of
solvated systems, and BORN required a special "vector" topology file in which multi-term dihedrals
had duplicated atom pointers. Rev A MIN is machine independent, thus there is now only one mini-
mizer for all machines. The pairlist generator and all energy routines are vectorized, but also run very
efficiently on scalar machines. There is now only one kind of topology file for all Rev A software. It
is identical to the Ver. 3.0 "scalar" topology file. Multi-term dihedrals now have their pointers dupli-
cated in MIN. In Rev A MIN all assumptions that integers and floating point words are the same size
have been removed. This allows a full double precision version to be created on machines with native
32 bit wordsize. The single and double versions are now created automatically from the same code
through the use of the cpp code preprocessor. A check for 16 bit overflow has been installed. This is
important in very large systems when using 16 bit integers for the pairlist. The 16 bit pairlist is a
configurable option on byte oriented machines, and is the default for Cray hardware. A check for
pairlist overwrites has been installed to alleviate this common source of crashes. Memory use has
been reduced. All single precision constants have been changed to double precision, improving con-
sistency of results between different machines. The unreliable atom-based pairlist option has been
removed. The pairlist generator now uses the oxygen atom of solvent waters in periodic systems. This
behavior was formerly only found in BORN. An input switch is provided to revert to the old MIN
behavior in which all atoms are used. A new highly vectorized solute-solvent routine which is much
faster for large solvated systems has been added to the pairlist generator. Periodic systems are now
imaged on a residue by residue basis, which prevents the serious imaging errors common to the earlier
code. Installed portable file handling scheme with Unix command line interface, configurable for JCL
file assignment. Rev A MIN is compatible with all data files from Ver. 3.0, with the exception of the
old "vector" topology file. Binary data files are only supported in the single precision version. There
is a check in MNREAD on the use of binary i/o. User-level output has been cleaned up, and some
error messages improved. Redimensioning has been simplified by the use of parameter statements
which only need to be set in main. Documentation on memory requirements is found in install.doc
and in the Main module of Rev A MD.

Md:

Amber 3.0 contained two molecular dynamics programs, NEWTON for Cray machines and MD
for the FPS264 and VAX/VMS machines. These programs differed slightly in input and in the han-
dling of solvated systems, and NEWTON required a special "vector" topology file in which multi-term
dihedrals had duplicated atom pointers. Rev A MD is machine independent, thus there is now only
one program for all machines. The pairlist generator and all energy routines are vectorized, but also
run very efficiently on scalar machines. There is now only one kind of topology file for all Rev A soft-
ware. It is identical to the Ver. 3.0 "scalar" topology file. Multi-term dihedrals now have their pointers
duplicated in MD.

In Rev A MD all assumptions that integers and floating point words are the same size have been
removed. This allows a full double precision version to be created on machines with native 32 bit
wordsize. The single and double versions are now created automatically from the same code through
the use of the cpp code preprocessor. A check for 16 bit overflow has been installed. This is important
in very large systems when using 16 bit integers for the pairlist. The 16 bit pairlist is a configurable
option on byte oriented machines, and is the default for Cray hardware. A check for pairlist overwrites
has been installed to alleviate this common source of crashes. Memory use has been reduced. All sin-
gle precision constants have been changed to double precision, improving consistency of results

1/30/113

Release Notes for Amber 3.0 Rev A Page 321

between different machines.

The unreliable atom-based pairlist option has been removed. The pairlist generator now uses the
oxygen atom of solvent waters in periodic systems. This behavior was formerly only found in NEW-
TON. An input switch is provided to revert to the old MD behavior in which all atoms are used. A
new highly vectorized solute-solvent routine which is much faster for large solvated systems has been
added to the pairlist generator. Periodic systems are now imaged on a residue by residue basis, which
prevents the serious imaging errors common to the earlier code. Support has been added for center-of-
mass scaling in constant pressure systems.

Installed portable file handling scheme with Unix command line interface, configurable for JCL
file assignment. Rev A MD is compatible with all data files from Ver. 3.0, with the exception of the
old "vector" topology file. Binary data files are only supported in the single precision version. There
is a check in MDREAD on the use of binary i/0. User-level output has been cleaned up, and some
error messages improved. Redimensioning has been simplified by the use of parameter statements
which only need to be set in main. See Code Configuration Section in MD main.

Rev A MD uses the exact same energy routines as MIN, thus assuring identical results and
reducing the software maintenance burden. In addition to the portable file handling and removal of
wordlength dependencies, a portable random number generator that gives bit-identical results on all
machines has been implemented.

SHIAG now translates ALL molecules in periodic systems, so solute will not leave the box. Out-
put intervals NTWX,VE and their limit values NTWX(V,E)M now may be set to 0 to obtain sensible
defaults. The new default behavior is no output, and dump files will not be opened. The default limit
value is unlimited. I/O buffers are now flushed at each energy output, on systems where this is useful
(ie, most Unix systems). First cycle energies are now always printed in order to check energy consis-
tency between runs. End of File conditions in GETCOR are now handled cleanly, giving a diagnostic
message instead of a crash.

Fixed long-standing bug in temperature evaluation for systems with non-zero NDFMIN. This
bug resulted in temperatures that were too high, especially for small systems. The ISTAY option,
which removed center of mass motion from solute only has been removed, as it was not correct to do
this. Removal of center of mass motion is now correctly inhibited for belly systems regardless of the
value of NTCM. Fixed bug that caused unwanted center of mass motion removal at start of multiple
runs in certain cases. The cartesian restraint routine RESTX that used relaxation time TAUR has been
removed. Its functionality is provided by XCONST, the harmonic restraint routine. The RESTX
restraints were interacting incorrectly with the XCONST restraints in the 3.0 implementation. Fixed
factor of ten error in total mass output from CENMAS. (this affected unit 6 output only, actual mass
was correct) Removed constraint coords from restart file.

Gibbs:

All code changes, configuration options, and removal of wordlength dependence in Rev A MD
also apply to GIBBS. See above or Rev A MD main for documentation. In addition to those changes,
the following modifications apply to GIBBS only: All dynamics code shared with MD was put in
library, so there would be only one version of each routine. In some cases this required small modifi-
cations, such as in PSCALE, where the sense of a flag argument needed to be reversed, and in a num-
ber of common blocks that had to be modified. Program now stops with error message if no restart
free energy is read on a slow growth restart, instead of assuming it to be zero. NNBOND was rewrit-
ten for improved vectorization and residue based imaging. The dihedral, angle, and bond evaluation
for non-perturbed atoms was vectorized, using the same code as MIN and MD. Consistency of results

1/30/113

Release Notes for Amber 3.0 Rev A Page 322

on different machines has been improved. Fixed bug in GETALM; affected any machines that do not
auto-save. [Note that some of the notes here regarding e.g. common libraries and vectorization of inter-
nal coordinate energy routines) do not apply to Gibbs version 4.0; see the 4.0 Gibbs

release notes].

Anal:

Added overwrite protection, parameterized arrays. Portable file handling with Unix command-
line interface, configurable for JCL file assignment. Removed other machine dependencies in
GAUSS80, HANGL, and RFREE. Fixed bug in CALHB that overwrote dihedral pointers. Standard-
ized PDB output. Removed all pairlist options except res-based/res pair memory efficient model.
Cleaned up user output. Fixed uninitialized variables and questionable syntax. Converted local vari-
ables and constants in energy routines to double precision.

Mdanal:

This program did not receive the same level of attention as other Rev A software. Although I
believe the changes made for Rev A were an improvement, I cannot guarantee the correctness or
robustness of this program. The following changes were made: Installed portable file handling with
Unix command-line interface, configurable for JCL file assignment. Parameterized the large scratch
array, fixed broken or missing overwrite protection in some places. Set up code to allow compiler
bounds checking. There are still unprotected arrays in this program, so use a bounds checker for
debugging if you run into any. Fixed uninitialized MQ in RSUBI. Removed machine dependencies in
HANGL, OPENB, NFORM, and WCONN. Fixed wrong unit number in PAKCM. Turned off movie
coord generation in MDSHOW; no longer needed. Standardized PDB output. Made all common
blocks consistent.

Nmode:

Installed portable file handling with Unix command-line interface, configurable for JCL file
assignment. Parameterized the large scratch array, fixed broken or missing overwrite protection.
Removed hardwired limit on max number of pairs, changed to use all allocated memory. Set up code
to allow compiler bounds checking. Converted all single precision constants to double precision form.
Added stop after minimizer error. Removed hbond cutoff in nonbon. Changed unit number of modes
file from 50 to 11. Made all values of MACHEP consistent. Cleaned up output. Made all common
blocks consistent.

New tools:

Two new features have been provided with Revision A running under Unix operating systems; an
automated validation suite and tools for automatic redimensioning of the Fortran code. The validation
suite is found in the amber41/test directory. There is a subdirectory for each program. Each subdirec-
tory contains a number of command files that run the program using inputs from the demo directory,
then diff the appropriate outputs. If the files have no differences, the test and diff outputs are removed.
If differences are found, the outputs and diffs are left for evaluation. The validation tests should be
run at installation, and after any change in the code or in system hardware, compilers, or libraries.
Most of the programs have been modified to make safe redimensioning possible, through the use of
Fortran parameters and any other necessary alteration of the code. In order to simplify

1/30/113

Release Notes for Amber 3.0 Rev A Page 323

redimensioning, each source directory contains an executable csh script called ’resize.com’. These
scripts use the stream editor sed to perform regular expression matching in order to change all
instances of parameter values consistently, regardless of the value they were previously set to. These
scripts will work correctly even if the same parameter was inadvertently set to different values in the
same or different files. Each resize.com script contains documentation on appropriate ratios for
parameter values.

1/30/113

