[AMBER] Prepgen omits information about half of the atoms

From: Maria Minakova <mariabiophysics.gmail.com>
Date: Thu, 28 Jun 2012 17:25:15 -0400

Hi,
I'm working on parametrization of Ruthenium-based chromophore for further all-atom MD.
I tried to make prep files by two ways, both failed:

1) I use g09 output file (see more below) to run antechamber:
antechamber -i chrom1_12.log -fi gout -o chrom1_12.prepin -fo prepi -c resp -at amber -s 2 -gv 1 -ge chrom1_12_respfile.gesp (fail at espgen stage)

The error message is:
espgen cannot deal with Gaussian 09 log file, please generate Gaussian 09 ESP file using iop(6/50=1) and rerun espgen
Error: cannot run "/Users/MariaM/amber12/bin/espgen -o ANTECHAMBER.ESP -i chrom1_12.log" in resp() of charge.c properly, exit

ANTECHAMBER.ESP file is empty

2) after doing step one I run:
2.1) respgen -i ANTECHAMBER_AC.AC -o chrom1_12.respin1 -f resp1 (success)
2.2) respgen -i ANTECHAMBER_AC.AC -o chrom1_12.respin2 -f resp2 (success)
2.3) resp -O -i chrom1_12.respin1 -o chrom1_12.respout1 -e ANTECHAMBER.ESP -t qout_stage1 (success)
2.4) resp -O -i chrom1_12.respin2 -o chrom1_12.respout2 -e ANTECHAMBER.ESP -q qout_stage1 -t qout_stage2 (success)
2.5) antechamber -i ANTECHAMBER_AC.AC -fi ac -o chrom1_12_resp.ac -fo ac -c rc -cf qout_stage2 (success, except for warning)

For atom[110]:Ru1, the best APS is not zero, bonds involved by this atom are frozen

2.6) prepgen -i chrom1_12_resp.ac -o chrom1_12.prepin -f int -rn BZ1

the file chrom1_12.prepin is created, but information about atom# > 58 is lost:

    0 0 2

This is a remark line
molecule.res
BZ1 INT 0
CORRECT OMIT DU BEG
  0.0000
   1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000
   2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000
   3 DUMM DU M 2 1 0 1.522 111.1 .0 .00000
   4 O2 o M 3 2 1 1.540 111.208 -180.000 -0.486813
   5 C20 c M 4 3 2 1.242 30.171 -64.174 0.434978
   6 H6 h4 E 5 4 3 1.100 122.239 -24.438 0.056907
   7 C17 c3 M 5 4 3 1.548 121.602 157.515 -0.027186
   8 C19 c3 B 7 5 4 1.545 112.191 41.627 -0.083785
   9 H5 hc E 8 7 5 1.095 109.037 -28.431 0.096385
  10 H7 hc E 8 7 5 1.094 112.405 92.948 0.096385
  11 H3 h1 E 7 5 4 1.098 107.838 166.763 0.060995
  12 N7 n M 7 5 4 1.493 111.519 -73.624 -0.095454
  13 C41 c B 12 7 5 1.379 118.989 -51.578 0.534850
  14 O15 o E 13 12 7 1.262 119.178 1.195 -0.570831
  15 C42 c3 3 13 12 7 1.518 117.858 -178.684 -0.197609
  16 H41 hc E 15 13 12 1.091 108.368 -174.594 0.075016
  17 H42 hc E 15 13 12 1.098 111.559 -54.574 0.075016
  18 H43 hc E 15 13 12 1.098 111.088 66.131 0.075016
  19 C16 c3 M 12 7 5 1.473 113.422 124.445 -0.135613
  20 H1 h1 E 19 12 7 1.098 111.922 -98.958 0.108381
  21 H2 h1 E 19 12 7 1.095 111.608 138.514 0.108381
  22 C18 c3 M 19 12 7 1.550 102.210 18.424 -0.173188
  23 H4 h1 E 22 19 12 1.096 110.023 85.429 0.136263
  24 N1 na M 22 19 12 1.476 112.739 -155.655 0.518912
  25 C1 cc S 24 22 19 1.376 129.296 -126.583 -0.448171
  26 H8 h4 E 25 24 22 1.077 122.913 2.266 0.238542
  27 N2 nc M 24 22 19 1.385 119.748 56.041 -0.419388
  28 N3 nd M 27 24 22 1.337 106.237 177.922 -0.075864
  29 C2 cd M 28 27 24 1.389 109.811 -0.077 0.257406
  30 C3 c3 M 29 28 27 1.509 119.083 -179.773 -0.054636
  31 H9 h1 E 30 29 28 1.098 111.739 -116.181 0.107542
  32 H10 h1 E 30 29 28 1.097 111.835 124.263 0.107542
  33 N4 n M 30 29 28 1.472 106.718 4.079 -0.165437
  34 H11 hn E 33 30 29 1.020 113.483 -3.047 -0.008955
  35 C4 c M 33 30 29 1.354 122.615 177.176 0.459953
  36 O1 o E 35 33 30 1.263 124.046 1.137 -0.539587
  37 C5 ca M 35 33 30 1.519 116.862 -178.562 0.040550
  38 C7 ca B 37 35 33 1.411 125.530 3.043 -0.102250
  39 C8 ca B 38 37 35 1.401 119.106 178.868 -0.109223
  40 N5 nb E 39 38 37 1.361 122.679 0.271 0.075804
  41 H14 h4 E 39 38 37 1.082 120.563 -179.666 0.140736
  42 H13 ha E 38 37 35 1.085 122.668 -0.476 0.184645
  43 C6 ca M 37 35 33 1.406 116.412 -177.811 -0.064493
  44 H12 ha E 43 37 35 1.084 116.865 0.239 0.139061
  45 C9 cp M 43 37 35 1.402 120.557 -179.203 0.033360
  46 C10 cp M 45 43 37 1.478 123.834 179.859 0.021187
  47 N6 nb M 46 45 43 1.377 115.229 -177.718 0.102653
  48 C12 ca M 47 46 45 1.362 118.563 -179.831 -0.138256
  49 H16 h4 E 48 47 46 1.083 116.634 -179.876 0.151130
  50 C13 ca M 48 47 46 1.398 122.528 -0.237 -0.131907
  51 H17 ha E 50 48 47 1.086 119.294 -179.750 0.171058
  52 C14 ca M 50 48 47 1.415 120.085 0.301 0.164784
  53 C15 c3 3 52 50 48 1.510 121.507 178.823 -0.330501
  54 H18 hc E 53 52 50 1.095 111.465 36.533 0.132278
  55 H19 hc E 53 52 50 1.095 111.863 157.969 0.132278
  56 H20 hc E 53 52 50 1.098 110.414 -82.439 0.132278
  57 C11 ca M 52 50 48 1.411 116.877 -0.281 -0.155728
  58 H15 ha E 57 52 50 1.084 119.277 -179.909 0.173412
  59 X 1 0 1 14.095 nan 0.000 0.000000
  60 X 1 0 1 14.095 nan 0.000 0.000000
  61 X 1 0 1 14.095 nan 0.000 0.000000
  62 X 1 0 1 14.095 nan 0.000 0.000000
  63 X 1 0 1 14.095 nan 0.000 0.000000
  64 X 1 0 1 14.095 nan 0.000 0.000000
  65 X 1 0 1 14.095 nan 0.000 0.000000
  66 X 1 0 1 14.095 nan 0.000 0.000000
  67 X 1 0 1 14.095 nan 0.000 0.000000
  68 X 1 0 1 14.095 nan 0.000 0.000000
  69 X 1 0 1 14.095 nan 0.000 0.000000
  70 X 1 0 1 14.095 nan 0.000 0.000000
  71 X 1 0 1 14.095 nan 0.000 0.000000
  72 X 1 0 1 14.095 nan 0.000 0.000000
  73 X 1 0 1 14.095 nan 0.000 0.000000
  74 X 1 0 1 14.095 nan 0.000 0.000000
  75 X 1 0 1 14.095 nan 0.000 0.000000
  76 X 1 0 1 14.095 nan 0.000 0.000000
  77 X 1 0 1 14.095 nan 0.000 0.000000
  78 X 1 0 1 14.095 nan 0.000 0.000000
  79 X 1 0 1 14.095 nan 0.000 0.000000
  80 X 1 0 1 14.095 nan 0.000 0.000000
  81 X 1 0 1 14.095 nan 0.000 0.000000
  82 X 1 0 1 14.095 nan 0.000 0.000000
  83 X 1 0 1 14.095 nan 0.000 0.000000
  84 X 1 0 1 14.095 nan 0.000 0.000000
  85 X 1 0 1 14.095 nan 0.000 0.000000
  86 X 1 0 1 14.095 nan 0.000 0.000000
  87 X 1 0 1 14.095 nan 0.000 0.000000
  88 X 1 0 1 14.095 nan 0.000 0.000000
  89 X 1 0 1 14.095 nan 0.000 0.000000
  90 X 1 0 1 14.095 nan 0.000 0.000000
  91 X 1 0 1 14.095 nan 0.000 0.000000
  92 X 1 0 1 14.095 nan 0.000 0.000000
  93 X 1 0 1 14.095 nan 0.000 0.000000
  94 X 1 0 1 14.095 nan 0.000 0.000000
  95 X 1 0 1 14.095 nan 0.000 0.000000
  96 X 1 0 1 14.095 nan 0.000 0.000000
  97 X 1 0 1 14.095 nan 0.000 0.000000
  98 X 1 0 1 14.095 nan 0.000 0.000000
  99 X 1 0 1 14.095 nan 0.000 0.000000
 100 X 1 0 1 14.095 nan 0.000 0.000000
 101 X 1 0 1 14.095 nan 0.000 0.000000
 102 X 1 0 1 14.095 nan 0.000 0.000000
 103 X 1 0 1 14.095 nan 0.000 0.000000
 104 X 1 0 1 14.095 nan 0.000 0.000000
 105 X 1 0 1 14.095 nan 0.000 0.000000
 106 X 1 0 1 14.095 nan 0.000 0.000000
 107 X 1 0 1 14.095 nan 0.000 0.000000
 108 X 1 0 1 14.095 nan 0.000 0.000000
 109 X 1 0 1 14.095 nan 0.000 0.000000
 110 X 1 0 1 14.095 nan 0.000 0.000000
 111 X 1 0 1 14.095 nan 0.000 0.000000
 112 X 1 0 1 14.095 nan 0.000 0.000000
 113 X 1 0 1 14.095 nan 0.000 0.000000
 114 X 1 0 1 14.095 nan 0.000 0.000000
 115 X 1 0 1 14.095 nan 0.000 0.000000
 116 X 1 0 1 14.095 nan 0.000 0.000000
 117 X 1 0 1 14.095 nan 0.000 0.000000
 118 X 1 0 1 14.095 nan 0.000 0.000000
 119 X 1 0 1 14.095 nan 0.000 0.000000


LOOP
  C18 C19
   C2 C1
   C9 N5
  C11 C10

IMPROPER
  C17 H6 C20 O2
  C41 C16 N7 C17
  C42 N7 C41 O15
  C18 C1 N1 N2
   C2 H8 C1 N1
   C3 C1 C2 N3
   C3 C4 N4 H11
   C5 N4 C4 O1
   C4 C7 C5 C6
   C5 C8 C7 H13
   C7 H14 C8 N5
   C5 C9 C6 H12
   C6 C10 C9 N5
  C11 C9 C10 N6
  C13 H16 C12 N6
  C12 C14 C13 H17
  C15 C13 C14 C11
  C14 C10 C11 H15

DONE
STOP

Additional info:
The chromophore consists of 116 atoms. I ran DFT to optimize structure and get esp charges on Gaussian 09 with the input line:

# opt b3lyp/lanl2dz geom=connectivity pop=(mk,readradii) iop(6/50=1)

... and last two lines from *.com:

44 2.0

44 2.0

Can anything be done to make prepgen process large molecules like this?


With best regards, Maria Minakova.




_______________________________________________
AMBER mailing list
AMBER.ambermd.org
http://lists.ambermd.org/mailman/listinfo/amber
Received on Thu Jun 28 2012 - 14:30:03 PDT
Custom Search