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1 Introduction:

Pressure regulation and atom position restraints

Members of our group have observed that AMBER has difficulty running
MD simulations at constant pressure whenever a large number of atoms are
restrained. This is one of the obstacles preventing us from using AMBER
in simulations involving large (immobile) assemblies like infinite surfaces or
polymers.

The purpose of this document is to 1) call attention to problems with
pressure regulation in AMBER 2) point out a simple solution to fix the
problem 3) propose code that implements this solution 4) ask for feedback.
(If you don’t think this approach will work, or if I screwed up, I am curious
to hear about it and can be reached at jewett.ai on gmail. Note: I am not
using AMBER much these days, but I am curious to read your comments.)

Currently, in AMBER, all pairwise forces between atoms contribute to
the virial, regardless of whether they act on mobile or immobile atoms.
Furthermore, all atomic positions are rescaled during pressure equilibration,
including mobile atoms, immobile atoms (and restraint anchors). Although
this is consistent with the way the virial is calculated, this behavior can be
undesirable (see figure 1). We hope to convince the development team to
make this behavior optional.

To compensate for this proposed change, we suggest that the forces act-
ing on immobilized atoms should be omitted from the virial. . . . unless the
forces that are used immobilize the atoms (and negate these pairwise forces)
are included in the virial. (Although I could be wrong, my impression is
that presently they are not.) Ideally, for efficiency, these pairwise forces
acting on immobilized atoms should not even be calculated. (Although, to
implement that modest performance enhancement at this late stage in the
AMBER code might require rewriting a substantial amount of code. As an
alternative, in appendix A, I included a small modification to the sander
source code that we have been using to fix the virial in AMBER.)

This document ended up being a bit long. However the conclusion is
simple: Please include the restraint forces in the virial (and do not automat-
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ically rescale immobile atoms). This solution applies to systems with either
harmonic or rigid (belly) restraints.

Figure 1: Snapshot of a simulation containing restrained highly repulsive
atoms. Immobilizing restraints are particularly useful when applied to sys-
tems that would otherwise be unstable. As an extreme example, here we
show a frame of animation from a simulation of (default TIP3P) water inter-
acting with a slab of immobilized ice (middle) which has been held in place
using harmonic restraints under NPT conditions (T = 300◦K, P = 1 bar).
The innermost layers of ice (white) have had their charges removed, allowing
the remaining Lennard-Jones forces to dominate, causing strong intermolec-
ular repulsion. Under NPT conditions, AMBER continues to expand the
simulation box in a vain effort to relax the stress between repulsive (white)
molecules, which are held in place by restraints. This cavitation problem
goes away if either: 1) the charges in the middle layer are restored, or 2)
harmonic restraints are removed allowing the neutral (white) molecules to
expand to their equilibrium size.

2 The Virial in the presence of immobile atoms

The virial, W , is used to compute the instantaneous pressure of the system,
and it is an ingredient in both of the barostats implemented in AMBER
(either Berendsen, or Nose-Hoover, when PIMD is used). It is defined as:
W = −3V dU

dV , where U is the potential energy per unit cell, and V is the
volume of the unit cell. (There’s a nice review of the virial that I found useful
in chapter 5.3 of [1], and also [2].) To simplify this discussion, lets assume
that the system has a cubic unit cell, and that scaling is isotropic (V = L3,
where L is the box size). I will assume that the forces contributing to
the virial are dominated by pairwise interactions between atoms (denoted

2



uµν(|~rµ − ~rν |), where ~rµ and ~rν are the positions of atoms µ and ν). The
potential energy (per unit cell) is the sum of all pairwise energies between
atoms, and their images in other cells, and can be written as:

U =
1

2

∑
~m∈Z3

∑
µ6=ν

uµν (|~rµ − (~rν + L~m)|) (1)

useful notation: ~rν,~m ≡ ~rν + L~m (2)

=
1

2

∑
~m∈Z3

∑
µ6=ν

uµν
(∣∣~rµ − ~rν,~m∣∣) (3)

where
∑

µ 6=ν is a sum over all pairs of atoms in the system (mobile or
immobile), and

∑
~m∈Z3 is a sum over an atom’s images in all surrounding

unit cells (located at position ~rν + L~m, where ~m, is a vector with integer
x,y,z components). The factor of 1

2 compensates for redundancy of equivalent
pairs (µ↔ ν). This yields:

W = −3V
dU

dV
= −L dU

dL
(where V = L3) (4)

= −L
2

∑
~m∈Z3

(∑
µ6=ν

d~rµ
dL
·
∂uµν

(∣∣~rµ − ~rν,~m∣∣)
∂~rµ︸ ︷︷ ︸

= −~fν,~m→µ

+
d~rν,~m
dL

·
∂uµν

(∣∣~rµ − ~rν,~m∣∣)
∂~rν,~m︸ ︷︷ ︸

= −~fµ→ν,~m

)
(5)

One can recognize − ∂
∂~rµ

uµν
(∣∣~rµ − ~rν,~m∣∣) as the force acting on atom µ ex-

erted by atom ν’s image in unit cell indicated by ~m (denoted ~fν,~m→µ). We
now split this sum into terms involving mobile and immobile atoms. We
use lower-case indices (i, j) to refer to mobile atoms, and upper-case indices
(I, J) to refer to immobile atoms, respectively. Expressed this way, W =

L

2

∑
~m∈Z3

(∑
i 6=j

(
d~ri
dL

~fj,~m→i +
d~rj,~m
dL

~fi→j,~m

)
+
∑
I,j

(
d~rI
dL

~fj,~m→I +
d~rj,~m
dL

~fI→j,~m

)

+
∑
i,J

(
d~ri
dL

~fJ,~m→i +
d~rJ,~m

dL
~fi→J,~m

)
+
∑
I 6=J

(
d~rI
dL

~fJ,~m→I +
d~rJ,~m

dL
~fI→J,~m

))
(6)

We use the notation: ~si ≡ ~ri/L to denote the normalized coordinates of atom
i. The x,y,z components of ~si lie in the range from 0 and 1. Because mo-
bile (unconstrained, lower-case) atom positions are rescaled during pressure
equilibration, this means that ~ri and ~rj are proportional to L (~rj = L~si),
and consequently, ~si and ~sj are independent of L. Consequently:

L
d~ri
dL

= ~ri and L
d~rj.~m
dL

= ~rj,~m = ~rj + L~m (7)

(See equation 2.) Let us assume, for the moment that immobilized atoms
are not rescaled during pressure equilibration (see section 2.2). This means
that:

d~rI
dL

=
d~rJ
dL

= 0 and thus
d~rI,~m

dL
=

d~rJ,~m
dL

= ~m (8)

3



After substituting equations 7 and 8 into 6, and some additional simplifica-
tion (appendix B) we find that the following terms (denoted ∆Wim) are left
out of the virial:

∆Wim =
∑
I

~rI ·
∑
~m∈Z3

∑
j

~fj,~m→I +
∑
J>I

~fJ,~m→I

 (9)

These terms would otherwise be present if the immobilized atoms (with
indices I, and J) were scaled with the box-size during pressure equilibration.

These terms (∆Wim) should be subtracted from the virial as calculated
by AMBER, which (I strongly suspect) includes all of these pairwise force
terms. This correction is necessary since, for the virial, AMBER presently
does not include contributions from the restraints used to hold the atoms
in place. Alternately, one can apply the restraint forces which negate these
before calculating the virial. (This is really the same thing, because these
constraint forces would have contributed −∆Wim to the virial.) For com-
pleteness, an expression for the full virial is given in equation 10 in appendix
B.

We can recognize the sum over
∑

~m∈Z3 as the net pairwise force acting
on atom I. Hence we can calculate this correction to the virial knowing
only the net force acting on each atom. (This assumes that this net force
is dominated by pairwise forces, and does not include harmonic position
restraints.) The code for calculating this correction (∆Wim) is included in
appendix A.

2.1 Harmonic restraints

The fixed proposed above should be adequate for harmonic restraints, even
though, strictly speaking the restrained atoms are not truly immobilized.
However in such cases, one can consider the pairwise interactions between
mobile atoms, and invisible immobile anchor-points. When viewed this way,
it’s really the anchor points which play the role of the immobilized atoms in
this case. So long as the force acting on these anchor points is not included
in the virial (and the force of the anchor points on other atoms is included in
the virial), then no correction to the virial is necessary. Hence, the solution
for both harmonic restraints and rigid belly constraints is the same: include
restraint forces in the virial.

2.2 Should immobilized atoms be rescaled?

Perhaps the choice whether to rescale immobilized atoms should be left up
to the user. The current behavior of AMBER is not a bug. (The virial
appears to be calculated in a way that is consistent with the way the atoms
are rescaled during pressure equilibration.) However it can lead to coun-
terintuitive results. Being able to fix the positions of atoms during NPT
simulations is a feature that I’d like to see added to AMBER.
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Appendices:

A Amending the AMBER virial code

The following function calculates ∆Wim and subtracts it from the virial
(actually it calculates the x,y,z components of ∆Wim, and subtracts them
from the x,y,z components of the virial). I have added the following function
to the sander source code:

!subroutine correct_vir_immobile() modifies the virial

!due to immobilized atoms. 6 arguments are required:

!

!nat is the number of atoms in the system

!vir() stores the x,y,z components of the virial

!f() is the net force on each atom (excluding immobilizing restraints)

!x() is the position of each atom

!igrpfixed() is an array of integers. igrpfixed(i)==0 if atom i is immobilized

!coeff is a coefficient used to correct for discrepancies

! between the "vir()" array and the traditional virial.

subroutine correct_vir_immobile(nat,igrpfixed,f,x,coeff,vir)

implicit none

integer:: i, i3, nat

_REAL_:: coeff

integer, intent(in) :: igrpfixed(*)

_REAL_, intent(in) :: f(*)

_REAL_, intent(in) :: x(*)

_REAL_, intent(inout) :: vir(4)

do i = 1,nat

if(igrpfixed(i) == 0) then

i3 = 3*i-3

vir(1) = vir(1) - coeff*x(i3+1)*f(i3+1)

vir(2) = vir(2) - coeff*x(i3+2)*f(i3+2)

vir(3) = vir(3) - coeff*x(i3+3)*f(i3+3)

end if

end do

return

end subroutine correct_vir_immobile

When I invoke this function I have been substituting the “ener%vir” array
for the “vir” argument (which differs from the traditional virial by a factor
of two). To compensate, I have been setting “coeff” to -0.5. (I tried a few
different values for “coeff”, and -0.5 works.)

In principle, you can use this function to correct the virial regardless of
whether you use harmonic restraints or rigid “belly” constraints to immo-
bilize your atoms. Because I prefer rigid “belly” constraints, I have been
invoking “correct vir immobile()” in the following way inside “force.f”
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if (ibelly == 2) then

call correct_vir_immobile(natom,ix(ibellygp),f,x,-0.5d0,vir)

In this code, rescaling of immobilized atom positions is optional. (If the user
wants this feature, then they can set ibelly=2, which is currently unused.)
Location: I place this line code directly preceding the line where “bellyf()”.
(This line was modified slightly as well.)

if (ibelly > 0) then

call bellyf(natom,ix(ibellygp),f) !zero forces on belly atoms

Note that additional modifications to the code must be made to prevent the
rescaling of immobilized atom coordinates. (In sander at least, the relevant
subroutine is “ew pscale()” located in the file “ew box.f”)

A caveat for simulating infinite polymers and surfaces:

Care should probably be taken whenever the constrained object crosses pe-
riodic boundaries of simulation. In that case, I suspect we should prevent
the box from scaling in that direction. (As an example, we tested AMBER
by constraining infinite slab that lies along the XY plane. Consequently,
we only allow the periodic box to be rescaled in the Z direction at constant
pressure conditions. The slab is quite thick, and we also had to make sure
that the slab does not accidentally get divided by the Z-boundary when
loaded into AMBER/leap.)

A.1 Testing the amended virial code

If the new virial code is working, one would hope that the density of a liquid
should not change when roughly half of the water molecules are immobilized.

The new virial code was tested using a box of unconstrained TIP3P
water at constant pressure (P = 1 bar, and T = 300◦K) After equilibration,
all of the water molecules lying within a 60Å-thick slab were immobilized
using rigid (belly) constraints, and the simulation was allowed to continue
at the same temperature and pressure, while using the fix to the virial code.

Nevertheless, the tests show a 1% increase in liquid density when the
constraints are applied, (See figure 2. More precisely, the corresponding
volume is 1% of the total volume of the water. However the volume decrease
amounts to almost 3% of the remaining volume of the free water.)

I don’t know how serious this is, whether it means my virial code does
not work, or if the compression is due to some interesting physics. (This is
part of the reason I am posting these results publicly. Feel free to contact
me (jewett.ai on gmail) if you have suggestions, or want to suggest a better
way to test the new virial code.) At any rate, this behavior seems to be an
improvement from the original behavior (figure 1).

B Simplifying the virial

I skipped a few steps when deriving equation 9. The are included here.
Substituting equations 7 and 8 into equation 6 completely eliminates terms
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Figure 2: Volume vs. time for a simulated box of 6550 water molecules at
constant pressure, with and without position constraints. The size of the
box was approximately 47× 47× 90Å3. Initially, at t = 0, the box had
been artificially filled with solvent. During the first 145ps of the simulation,
the system relaxed to its equilibrium density, without any constraints ap-
plied. At t ≈ 145ps, the conditions of the simulation changed in two ways:
1) Rigid (belly) constraints were applied to the water lying in the central
60Å-thick slab whose center-of-mass z coordinates lie in the range from
5.0Å < z < 65.0Å. 2) The molecules in the center of this immobilized slab,
25.0Å < z < 45.0Å, were subjected to strong repulsive forces by turning off
their charge, as was done in figure 1. The simulations were then continued
at constant pressure (holding the box-size fixed in the X and Y directions)
until t = 170ps, at which point the charges were switched back on. At
t = 180ps, the constraints were released. This shows that, even after our
correction to the virial, constraints do seem to have a modest effect on the
density of the liquid.
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containing ~fj,~m→I , ~fJ,~m→I , and reduces the number of terms containing
~fi→J,~m, and ~fI→J,~m. We are left with:

W =
1

2

∑
~m∈Z3

(∑
i 6=j

(
~ri · ~fj,~m→i + (~rj + L~m) · ~fi→j,~m

)
+
∑
I,j

(
(~rj + L~m) · ~fI→j,~m

)

+
∑
i,J

(
~ri · ~fJ,~m→i + L~m · ~fi→J,~m

)
+
∑
I 6=J

(
L~m · ~fI→J,~m

))
(10)

This expression for the virial can be written in multiple equivalent ways.
(Although it is cleaner to simply calculate the virial in the ordinary way
and excluding all the pairwise forces exerted on immobilized atoms.) Note
that: ~fi → j,~m (the force from atom i acting on the image of atom j in unit

cell ~m) is identical to ~fi,−~m → j (the force acting on immobilized atom j,
coming from the image of atom i in unit cell −~m).

The terms which (as a result of immobilizing of some of the atoms), are
absent from this summation (denoted ∆Wim), are:

∆Wim =
1

2

∑
~m∈Z3

(∑
I,j

~rI · ~fj,~m→I +
∑
i,J

~rJ · ~fi→J,~m

+
∑
I 6=J

(
~rI · ~fJ,~m→I + ~rJ · ~fI→J,~m

))
(11)

By using the identities: ~fi → J,~m = ~fi,−~m → J and ~fI → J,~m = ~fI,−~m → J , and
replacing ~m by −~m, in the sum

∑
~m∈Z3 (since we are summing over both

positive and negative x,y,z components of ~m), and combining and elimi-
nating redundant terms (and eliminating the factor of 1

2), we can justify
equation 9.
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