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It is now feasible to carry out molecular dynamics simulations of proteins in water that are long compared
to the overall tumbling of the molecule. Here, we examine rotational diffusion in four small, globular proteins
(ubiquitin, binase, lysozyme, and fragment B3 of protein G) with the TIP3P, TIP4P/EW, and SPC/E water
models, in simulations that are 6 to 60 times as long as the mean rotational tumbling time. We describe a
method for extracting diffusion tensors from such simulations and compare the results to experimental values
extracted from NMR relaxation measurements. The simulation results accurately follow a diffusion equation,
even for spherical harmonic correlation functions withl as large as 8. However, the best-fit tensors are
significantly different from experiment, especially for the commonly used TIP3P water model. Simulations
that are 20 to 100 times longer than the rotational tumbling times are needed for good statistics. A number
of residues exhibit internal motions on the nanosecond time scale, but in all cases examined here, a product
of internal and overall time-correlation functions matches the total time-correlation function well.

1. Introduction

Macromolecules in aqueous solution undergo a variety of
thermal motions. Their overall rotational tumbling is regulated
by frequent collisions with light water molecules. For a nearly
rigid molecule, this physical model should lead to diffusive
rotational behavior, where the reorientation of a unit vector
attached to the molecule undergoes a random walk on the
surface of a sphere. Ifc(n,t) is the probability density for finding
the vector pointing directionn at time t, a spherical molecule
should follow a simple diffusion equation:1,2

Here Î is a (dimensionless) angular momentum operator. A
nonspherical molecule will tumble more rapidly about some
directions than about others, causing the diffusion constantDrot

to become a tensor:

HereΩ represents the Euler angles that specify the orientation
of the macromolecule.

The most powerful way to measure macromolecular diffusion
is by NMR relaxation, since it is very sensitive to both the
overall tumbling frequency and its anisotropy.3,4 For a rigid
molecule that rotates as a whole, the influence of molecular
motion on spin transition rates is governed by components of a
spectral density function,j(ω), which is the Fourier transform
of a time-correlation function:

For dipolar coupling, the unit vectorn lies along the vector

connecting the two spins, whereas for axial CSA tensors, it is
the direction of unique principal component of the shielding
tensor. The brackets in eq 3 indicate an average over all the
molecules in the ensemble, andYlm is a spherical harmonic. For
most aspects of NMR relaxation, thel ) 2 terms are needed,
but experiments such as dielectric relaxation depend onl ) 1.
If there is no preferred direction in space, as in isotropic solution
or in a randomly oriented powder, the expression in eq 3 is
independent of the subscriptm, and we can average over the 2l
+ 1 possible values using the spherical harmonic addition
theorem. This gives

wherePl(x) is a Legendre polynomial.
The analysis of NMR relaxation data typically assumes that

the rotational motion of a compact and folded protein follows
eq 2, so that the goal of the analysis is to determine the principal
values and orientation of the diffusion tensorD. Deviations from
the behavior predicted for a single diffusion tensor are generally
taken as evidence for internal motion (i.e., for nonrigid
behavior), most commonly using a model-free formalism that
assumes a statistical independence of internal and overall
motion.5,6 While there is no question that this overall description
is qualitatively correct for many well-folded proteins, quantita-
tive analyses of NMR relaxation data increasingly face questions
about the correctness of these assumptions. Does overall rotation
follow diffusion theory (with a single tensorD), or would it be
more correct to adopt a model with a distribution of tensors or
correlation times?5,7 Are typical internal motions of proteins
uncorrelated with overall rotational motion, and can we ap-
proximate the full correlation function as a product of separate
overall and internal functions? As proteins become more
disordered (either in toto or as a result of floppy “tails”), how
quickly do these standard models fail?

In principle, molecular dynamics simulations should have a
lot to say about these questions, since they provide a very
detailed (albeit approximate) description of macromolecular
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structure and dynamics. To date, most studies along these lines
have been devoted to the study of internal motions, since many
of these operate at a short enough time scale (tens to hundreds
of picoseconds) to be studied with current computers and
computational techniques.6,10 One can learn some information
about global motion by extrapolations from even short simula-
tions,11 but the longer time scales now available are expected
to yield more reliable information. Furthermore, many popular
water models (such as TIP3P) predict self-diffusion constants
and viscosities that are far from experiment (see Table 1), so
that one would not expect good results for rotational or
translation diffusion of macromolecules dissolved in such
solvents. Now that simulations that are many times longer than
rotational diffusion times are feasible and simple water models
are available with better diffusional properties, an examination
of rotational motion and its connection to internal motion should
yield interesting results. Here, we report simulations of 100-
200 ns on 4 small proteins and examine the extent to which
diffusional models match the dynamics data and the statistical
independence of overall and internal motion. We consider how
long simulations need to be to provide statistically reliable
results, whether the simulated motion is indeed diffusive, and
how the best-fit tensors compare to fits to experimental data.

2. Theory and Numerical Methods

2.1. Basics of Rotational Diffusion.For isotropic diffusional
motion, solutions to eq 1 are easily computed for any value of
l, and the correlation functions are single exponentials:2

Things are more complex for anisotropic molecules, even though
the general solution of the anisotropic rigid body diffusion
problem has been known for many years.1 It is a straightforward
but algebraically complex matter to compute the time correlation
function for a vector fixed to the rigid body using the Green’s
function of the rotational diffusion operator.12,13The same result
has been obtained without direct use of the diffusion operator
eigenfunctions.14 For l ) 1, the correlation function generally
will be written as a sum of three exponentials:12

Here, the polar angles give the orientation ofn in the principal
axis frame of the diffusion tensor. Rank 2 correlation functions
have five exponentials that have be written down in many
places.2,14-17 For simplicity, we show here results for a
symmetric top (whereDx ) Dy), which has three exponential
terms; numerical calculations, however, were done using the
fully anisotropic expression.17

Hence, for anisotropic rotation, the simple dependence of the
decay times onl(l + 1) seen in eq 5 no longer holds, although
it is still on average valid to first order in the anisotropy (see
eq 11 below).

2.2. Fitting the Diffusion Tensor: Singular Value Decom-
position Procedure. In order to see how well correlation
functions from MD simulations match diffusional behavior, we
need to have a procedure for determining the optimal tensor.
Here, we use a procedure that was developed for the analysis
of NMR relaxation data,18-20 and which is well-suited for
adaptation to the analysis of MD simulations. Although these
correlation function decays are expected to be multiexponential,
the proteins considered here have relatively small anisotropies,
and it is not realistic to try to extract multiple decay times from
the overall curves. Instead, we consider the average (or
“effective”) correlation time for a particular vector,n (e.g., a
backbone N-H bond vector or a randomly chosen direction in
the molecular frame), which can be defined as

where

is the usual time correlation function of a Legendre polynomial
of orderl. Note thatτ(n) = j(0), the zero-frequency component
of the corresponding spectral density function. This correlation
time is related to a “local” or effective diffusion constant by:

Assuming that the rotational motion ofn can be described
by a Brownian motion model, it can be shown that, for diffusion
tensors with small anisotropy,dloc(n,l) may be written as a
quadratic function inn:18-20

where

(This can be directly established by inserting eq 6 or eq 7 into
eq 8, expanding in powers ofDx - Dz, and simplifying terms.)
The tensorsD and Q encode equivalent but complementary
information: whereas 1/[l(l + 1)Dkk] is the time constant for
diffusion about thekth axis (in the principal axis frame of the
diffusion tensor,) 1/[l(l + 1)Qkk] gives the time constant for the
rotational diffusion of thekth axis.19 Since the right-hand side
of eq 11 is independent ofl, dloc should also be independent of
l when the motion is well-characterized as rotational diffusion
of n. Indeed, one test of whether a diffusion model fits the MD
data is to examine the dependence ofdloc (or, equivalentlyτl)
on l.2,11

In NMR experiments,dloc (or j(0)) is generated from data
that report on the spectral density function of rank 2 interactions

TABLE 1: Self-Diffusion Constants for the Models of Water
Used Here Where Data for TIP4P/EW Is from Ref 8, and
Remaining Data Is from Ref 9

model D298, 10-9 m2 s-1

experiment 2.2
TIP3P 5.7
SPC/E 2.8
TIP4P/EW 2.3

Cl(τ) ) exp[-l(l + 1)Drotτ] (5)

C1(τ) ) sin2 θ cos2 æ exp[-(Dy + Dz)τ] +

cos2 θ exp[-(Dx + Dy)τ] +

sin2 θ sin2 æ exp[-(Dx + Dz)τ] (6)

C2(τ) ) 1
4

{(3 cos2 θ - 1)2 exp[-6Dxτ] +

12 cos2 θ sin2 θ exp[-(5Dx + Dz)τ] +

3 sin4 θ exp[-(2Dx + 4Dz)τ]} (7)

τl(n) ) ∫0

∞
dτ〈Pl[n(0)‚n(τ)]〉 (8)

〈Pl[n(0)‚n(τ)]〉 ) lim
Tf∞

1
T∫0

T
Pl[n(t)‚n(t - τ)] dt (9)

dloc(n,l) ≡ 1
l(l + 1)τl(n)

(10)

dloc(n,l) ) nT‚Q‚n (11)

Q )
3DavI - D

2
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(e.g., dipolar and CSA) so thatdloc(n,2) ) 1/6τ2(n) is taken to
be the relevant local diffusion constant. Here,n is often a
backbone N-H bond vector, anddloc(n,2) is computed as a
function of R2(n)/R1(n) (or related quantities, such as (2R2 -
R1)/R1), where R1 and R2 are longitudinal and transverse
relaxation rates.20,21 (Various analysis procedures can be used
to minimize the effects of internal motion.) From MD simula-
tions, we can only compute reliable values ofCl(τ) for relatively
short timesτ; our method to obtaindloc(n,l) is described in
section 2.3, below. In this way, the local diffusion constants
become a key intermediate quantity that can be estimated from
both NMR experiments and from simulations; in this respect,
they play much the same role here as the model-free parameters
S2 andτe play in the analysis of internal motions by MD.

Equation 11 can also be written in the form

whereAT(n) ) [x2, y2, z2, 2xy, 2yz, 2xz], andQT ) [Qxx, Qyy,
Qzz, Qxy, Qyz, Qxz]. Herex, y, andz are Cartesian coordinates of
the vectorn in the molecular coordinate system. Data fromN
vectors may then be used to fit the diffusion tensor by
constructing a column vector whose components aredloc(n,l),
whereupon eq 13 becomes a matrix equation whose left-hand
side is a column vector of lengthN, andAT(n) is an N-by-6
matrix. This may be solved forQ (and thereforeD) using
singular value decomposition (SVD).22 The resultingD is then
diagonalized to yield its principal components and principal
axes. Such tensors are often characterized by their isotropic
diffusion constantsDav ≡ (Dx + Dy + Dz)/3 and their anisotropy
(∆) and rhombicity (δ), defined as:23

Here, Dx e Dy e Dz are principal values of the diffusion tensor.
Equation 13 is only strictly valid in the limit of small

anisotropy inD, but we expect the errors due to this assumption
to be moderate. In particular, it has been shown with simulated
data assuming an axially symmetric tensor, that fractional errors
in Dav andD|/D⊥ are no greater than a few percent for tensors
with anisotropies in the range we consider here.19 This should
be sufficient for analyses of the accuracy of molecular mechanics
potentials and the adequacy of the sampling provided by
trajectory lengths currently accessible by MD simulation.

We have selected the directionsn randomly from directions
uniformly distributed on the unit sphere; for the calculations
reported here, 1000 such directions were used. The time-
correlations functions for these vectors were generated by
applying the orthogonal matrix that rotates a reference structure
(the average over the trajectory) into the structure at a given
time in the MD simulation, that is, the rotation matrix
determined by the usual root mean squared deviation (rms)
fitting procedure. Though rms fitting instantaneous configura-
tions of the trajectory to a reference structure is a well-
established method for removing rotational and translation
motion from the analysis of internal motion,24 there is continuing
debate about which set of atoms provides the best results for
this purpose.25-28 Tests using other choices (such as backbone
atoms in regular secondary structure) gave results nearly

identical to those reported here. (This lack of sensitivity to the
rms fitting scheme might not hold for floppier proteins.)

2.3. Determining Local Diffusion Constants from Simula-
tion Data. From the simulation data, the correlation time is
found by integrating the time correlation function as shown in
eq 8. While the correlation functions may be easily computed
from the trajectories, statistical errors due to finite trajectory
length limit the useful data to short delay timesτ.29,30 In order
to estimate the full integral in eq 8, we resorted to an iterative
procedure for estimatingτl. We define the functionF(n,τf):

In practice, we simply used the Romberg integrator22 to
numerically integrate the correlation functions. If〈P〉 were an
exponentially decaying function of time delay with decay
constantτ(n), we would have

This can be rearranged to give the following equation, which
is to be solved iteratively until self-consistency is achieved
between right- and left-hand sides:

The single time-scale assumption is an oversimplification,
given that anisotropic diffusion is known to yield multiexpo-
nentially decaying correlation functions.12-14 We do not expect
this to be the limiting factor in the accuracy of our method,
given that time constants for the exponentials should differ by
less than a factor of 2. However, one must still address the
question of what the optimum value ofτf is, if it exists at all.
As we show below, for most of our data, the results forDav are
nearly independent of the integration limitτf which is less true
for quantities like∆ andδ.

2.4. Details of the Simulations.We carried out molecular
dynamics simulations on the four small, monomeric proteins
shown in Figure 1. All calculations used the Amber 9 simulation
package33 and the “ff99SB” protein force field.34,35 The water
model used was either SPC/E36 or TIP4P/EW;8 we also report
results for published simulations35 of ubiquitin and lysozyme
using the TIP3P water model.

For all simulations, the crystal structure was immersed in a
truncated octahedral box of water, with a buffer of 12 Å between
the protein atoms and the edge of the box, so that there is a
minimum of 24 Å between any protein atom and an atom of an
image in a neighboring unit cell. Sodium or chloride ions were
added to neutralize the net charge. Details about the starting
structures and number of solvent molecules are given in Table
2. The system was initially equilibrated to 300 K and 1 atm
pressure for 0.2 ns, with 1 kcal/mol restraints on all protein
atoms, to keep them from moving away from their starting
positions. This was followed by an additional 0.1 ns equilibration
with 0.1 kcal/mol restraints, followed by a 1 ns NVEsimulation
with no restraints. The “production” phase of simulation then
followed, in the NVE ensemble, for 100 ns (or 200 ns for GB3
+ SPC/E). The NVE ensemble was used because we are
interested here in dynamical effects, which would be perturbed
by use of a thermostat. These systems are large enough (with
15 000 to 30 000 atoms) that the microcanonical and canonical
ensembles are nearly the same. The calculations used a 1 fs
integration time step and an 8 Å direct-space cutoff for Lennard-

dloc(n,l) ) AT(n)Q (13)

∆ )
2Dz

Dx + Dy
(14)

δ )

3
2

(Dy - Dx)

[Dz - 1
2

(Dx + Dy)]
(15)

Fl(n,τf) ) ∫0

τf dτ〈Pl[n(t)‚n(t - τ)]〉 (16)

Fl(n, τf ) ) τl(n){1 - exp[-τf /τl(n)]} (17)

τl(n) ≡ 1
l(l + 1)dloc(n)

)
Fl(n, τf )

1 - exp[-τf /τl(n)]
(18)
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Jones and electrostatic interactions. Long-range electrostatic
effects were described with a PME procedure using default
parameters. Although the simulations should be following
Newtonian dynamics at constant total energy, there is a small
energy drift, primarily due to noise caused by neglect of
Lennard-Jones interactions beyond the cutoff but also partly due
to discretization errors in the PME procedure. As a result, the
average temperature increases by about 0.5 K over the 100 ns
of simulation time. This should have only a small effect on the
behavior reported here.

Trajectory snapshots were collected every 2 ps, and correla-
tion functions were calculated using theptraj module of Amber,
which was modified to use higher values ofl in eq 9. Overall
motion was monitored by keeping track of the rotation matrixes
needed for an rms superposition of CR atoms (excluding the
first two and last two residues) to the average structure. (For
ubiquitin, we used CR atoms of residues 3-71 for the
superposition.) The structures moved only small amounts (less
than 1 Å, except for binase) from their starting points, as
indicated in Figure 2. Other results from these simulations,
including an analysis of internal motions and hydrogen-bonding,
will be presented elsewhere.

3. Results and Discussion

3.1. Uncertainties in Correlation Functions and Diffusion
Tensors.As mentioned above, sampling a finite length trajectory
gives rise to nonzero variance or uncertainty in time correlation
functions. This is a likely source of nonexponential decays in
cases where the trajectory lengthT does not exceed the true
decay timeτ by nearly 3 orders of magnitude.30 The trajectories
surveyed in this study fall in the range 10< T/τ < 60 for l )
2. Therefore, any apparent nonexponential character of the
correlation functions could easily be a consequence of finite
trajectory length. The variance of a Gaussian process may be
estimated using the Bartlett formula,37,38 which when applied
to an isotropic rotational diffusion process yields29,30

Here,j is the (j - 1)th data point in the time series,Ts ) T/τ is
the scaled trajectory length, andjs ≡ j/τ is the scaled delay.
Figure 3 (left) shows a singlel ) 2 correlation function
generated from a member of the random initial vector set for
the GB3 (ff99sb+ SPC/E) trajectory, together with estimates
of variance computed using eq 19. The expected variance is
small for short delays but becomes larger asC(τ) decays. For
the parameters of the figure, the expected uncertainty inC(τ)
is about 0.06 atjs ) 1/2 and grows to 0.09 by the timejs ) 1,
that is, at a delay time equal to the rotational correlation time;
the latter value corresponds to a 23% relative uncertainty, which
clearly has a significant impact on the ability to estimate the
rate at which the true correlation function decays.

An alternative scheme for characterizing the uncertainty in
the correlation function, which would not assume a Gaussian
process, might be based on a division of a trajectory into shorter
segments. Correlation functions computed for halves and
quarters for our trajectory are also shown in Figure 3. At a fixed
delay, the correlation functions from the segments provide a
distribution of values for the correlation function. The correlation
functions from the shorter trajectories cluster about the mean
somewhat more tightly than what would be predicted from eq
19, suggesting that the actual reproducibility of results is a little
better than predicted by the statistical theory. A less well-
behaved result is shown at the right of Figure 3. Here, the
deviations of the slopes in the subsections of the trajectory
deviate from the full run at shorter delay times (as early as 1
ns), and the spread in results is worse at larger times as well.
There is also a noticeable nonexponential character to the
correlation function for the full trajectory. Even this result, which
is among the worst we saw, could be accommodated by the
statistical error bars indicated in the left-hand panel.

Any uncertainties in the slopes in plots like that of Figure 3
will propagate into uncertainties in the fitted diffusion tensors.
A simple approach to characterizing this error propagation can
be made by again analyzing shorter segments and by varying
the integration timeτf in eq 18. Results forDav are shown in
Figure 4. For the full trajectories (shown in blue), the results
are nearly independent ofτf: for GB3, for example, the fitted
value varies only between 0.070 and 0.071 ns-1 as τf ranges
from 0.1 to 5 ns. Similar behavior is seen for lysozyme and
binase, but the dependence onτf is much stronger for ubiquitin,
where the estimate ofDav varies by about 20%. Nearly identical
behavior is seen for the ubiquitin+ TIP4P/EW simulation (data
not shown). We do not know why ubiquitin is different from
the other three proteins in this respect; it may be due to the
presence of the C-terminal tail (see Figure 1), which could lead

Figure 1. Backbone cartoons for (a) GB3,31 (b) ubiquitin, (c) binase,32

and (d) hen egg-white lysozyme.

TABLE 2: Details of the Simulations

protein PDB # amino acids water model # waters length, ns

GB3 1p7e 56 SPC/E 4473 200
TIP4P/EW 4443 100

ubiquitin 1ubq 76 SPC/E 5955 100
TIP4P/EW 5895 100

binase a 109 SPC/E 9158 100
lysozyme 132l 129 SPC/E 10741 100

a X-ray dataset for binase kindly provided by G. Dodson (University
of York); resolution of 1.8 Å.

σ(j) ) { 1
Ts

[1 - (1 + 2js) exp(-2js)]}1/2
(19)
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to breakdown of the single-diffusion-tensor hypothesis. Further
studies on this point are ongoing.

Figure 4 indicates that the precision with which even the
average diffusion constant can be determined degrades rapidly
with shorter simulations. For example, the four quarters of the
GB3 trajectory (50 ns each) are best fit by values ofDav that

range from 0.06 to 0.08 ns-1 at τf ) 2 ns. Generally, the results
at shorter integration timesτf match the full trajectory better
than those at longer integration times.

One might expect more difficulty in determining the anisot-
ropy or rhombicity of a diffusion tensor, since these quantities
depend on the details of the motion rather than just on the

Figure 2. Root mean square superpositions to the starting structures for the SPC/E simulations.

Figure 3. Left: semilog plot ofC2(τ) vs delay time, for a randomly chosen direction in the GB3+ SPC/E simulation (solid black line), with values
computed from pieces of the trajectory in colored lines. Dashed lines are the error bounds from eq 19, usingT ) 200 ns,τ )2.5 ns, so thatTs )
80. Right: same, for a randomly chosen vector in the ubiquitin+ SPC/E simulation.
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average rotational tumbling time. This expectation is borne out
in Figure 5, which shows∆ and δ of the fitted tensors as a
function ofτf for the GB3 simulation. Even for the full 200 ns
simulation, the best-fit anisotropy∆ varies from 1.5 to 2 as a

function ofτf, and the rhombicity parameterδ ranges from 0.2
to 0.5. Shorter segments of the trajectories show even larger
variations. As withDav, the most consistent results appear to
come from the use of short times forτf, but it seems clear that

Figure 4. Dependence ofDav on the integration timeτf. Upper left, GB3; upper right, binase; lower left, lysozyme; lower right, ubiquitin (all with
SPC/E).

Figure 5. Dependence of∆ (left, eq 14) andδ (right, eq 15) on integration timeτf, for the GB3+ SPC/E trajectory.
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even longer sampling may be required to determine the extent
of anisotropy of the diffusion tensor with good precision.

3.2. Do the Simulations Exhibit Diffusive Motion?While
it is always possible to find the best-fit diffusion tensor from
the correlation functions of a reorienting molecule, the rotational
dynamics need not be diffusive. For example, the rotation of
small molecules in solution can be much more inertial in
character than one would ordinarily expect for a macromol-
ecule.2 A more relevant scenario to protein dynamics would be
instances where a single diffusion tensor cannot describe global
tumbling because of conformational transitions that change the
shape of the protein.

With this in mind, we characterize here the degree to which
both eq 13 and the full diffusion theory (parametrized using
the best fit tensor) are able to reproduce the local diffusion
constants from eq 18. Figure 6 shows scatter plots comparing
the MD results with diffusion theory. For both molecules (and
for others not shown), there are some deviations from the perfect
y ) x line, especially for the full diffusion tensor model. In
spite of these minor deviations, it is clear from Figure 6 that
fits of the MD to a diffusion model are actually quite accurate
for these proteins. Table 3 shows that the squared correlation
coefficients (r2) are all larger than 0.99 when comparing the
MD and diffusion model results fordloc.

A hallmark of diffusion theory is that time correlation
functions decay as 1/[l(l + 1)Dav] in the limit of small
anisotropy. In Figure 7, we present histograms of the ratiodloc-
(l ) 2)/dloc(l ) 1) for 1000 random directions for the GB3 and
ubiquitin simulations. Equation 11 implies that this ratio, for
diffusional motion, must be equal to 1 in the limit of small
anisotropy. Small anisotropy is not assumed in the diffusion
results in Figure 7, so that some deviations from unity are
expected. For both the full diffusion theory and the MD
simulations, there are indeed small deviations from unity, up
to 4% for GB3 (l ) 2) and up to about 0.4% for the more
spherical ubiquitin. The magnitudes of the deviations from unity
are roughly the same for the simulation as for diffusion theory,
indicating that the diffusion model is a rather accurate repre-
sentation of the simulation results.

An extension of this analysis to higher values ofl is given in
Figure 8. This shows thatDav changes by only a few percent as
l varies from 1 to 8 and that again there is a weak dependence
on τf. The fitted anisotropy parameter∆ is a stronger function
of both l andτf, in agreement with the results noted above. This
independence ofl has been noted in earlier MD studies of
rotational diffusion.11

3.3. Comparison to Experiment.In Table 3, we present a
comparison of experimentally determined Dav, ∆, andδ with

Figure 6. Comparison ofdloc values derived from the trajectory (eq 18, withτf ) 1 ns) with values from diffusion theory, using either low-
anisotropy limit (eq 11) or the fully anisotropic theory (eq 6 or 7) both using the SVD-fit diffusion tensor. Left, GB3+ SPC/E; right, binase+
SPC/E.

TABLE 3: Calculated ( l ) 2) Diffusion Tensors, Usingτf ) 1 ns

protein (force field)
Dav

(ns-1) ∆ δ
r2

(eq 13)
r2

(eq 7)

GB3 (ff99sb+ SPC/E) 0.070 1.81 0.33 0.9992 0.9955
GB3 (ff99sb+ TIP4P/EW) 0.060 1.58 0.45 0.9998 0.9960
GB3 (experimenta) 0.055 1.43 0.37
ubiquitin (ff99sb+ TIP3Pe) 0.109 2.32 0.27 0.9995 0.9912
ubiquitin (ff99sb+ SPC/E) 0.046 1.18 1.08 0.9985 0.9973
ubiquitin (ff99sb+ TIP4P/EW) 0.047 1.39 0.72 0.9998 0.9963
ubiquitin (experimentb) 0.041 1.16 0.268
binase (ff99sb+ SPC/E) 0.034 1.47 0.64 0.9997 0.9956
binase (experimentc) 0.028 N/A N/A
lysozyme (ff99sb+ TIP3Pe) 0.064 1.69 0.56 0.9997 0.9924
lysozyme (ff99sb+ SPC/E) 0.032 1.31 1.24 0.9999 0.9971
lysozyme (experimentd) 0.024 N/A N/A

a Fitted to asymmetric top model; corrected from 297 K and 9% D2O; from ref 23.b Fitted to asymmetric top model; from ref 39.c Corrected
from 303 K; from ref 40.d Corrected from 308 K and 5% D2O; from ref 41.e Simulation described in ref 35.
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results obtained from the MD simulations. Experimental results
were adjusted for temperature and D2O content to standard
conditions (pure H2O at 300 K). Adjustments were based on
the Stokes-Einstein relation

implying

Here,τ is the correlation time,η is the solvent viscosity,r is
the molecule (assumed spherical) radius, at temperatureT. The
temperature dependence of water viscosity was taken from
standard tables.42 The presence of D2O was accounted for by
assuming thatηD2O(T) ) 1.23ηH2O(T), giving

Aside from the TIP3P trajectories, the simulation values of
Dav are 10 to 30% larger than their experimental counterparts,
as might be expected from the self-diffusion constants given in
Table 1. WhereasDav for GB3 in SPC/E water is noticeably
larger than for GB3 in TIP4P/EW water, the corresponding
results for ubiquitin are remarkably close to one another. This
is apparent in Figure 9, where we present simulation and
experimentalDav as a function of inverse molecular weight.
Error bars in Figure 9 were obtained by taking the larger of the
difference between the maximum or minimum and averageDav

for the complete trajectories integrated over the delay intervals
shown in Figure 4. Whereas experimental results obey the
Stokes-Einstein relation (eq 20), which states that the diffusion
tensors should be inversely proportional to volume (and hence
to molecular weight, since the densities vary by less than 1%
in these simulations), the SPC/E trajectories deviate from this
expected behavior. However, with only four points, it is hard
to know how much to make of this.

Figure 10 showsdloc as a function of residue for two GB3
simulations (both withτf ) 1.0 ns) and for experiment. The

Figure 7. Histograms ofdloc(l ) 2)/dloc(l ) 1) for GB3+ SPC/E (left) and ubiquitin+ SPC/E (right). Black lines show results from the simulations
(usingτf of 1 ns); red lines use eqs 6 and 7 and the diffusion tensor that best-fits the MD forl ) 1; blue lines use the best-fit tensor for the MD
l ) 2 data.

Figure 8. Dependence ofDav (left) or ∆ (right) on the integration time and on the value ofl for the GB3+ SPC/E simulation.

τ ) 4πηr3

3kT
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simulation results are obtained from integration ofCrot(τ)
generated by backbone NH bonds, whereas the experimental
data were determined as described by Hall and Fushman.23 The
“comb-like” structure (between residues 23 and 39) in thedloc

data for GB3 (ff99sb+ SPC/E) is generally characterized by
slower diffusion than the remainder of the protein. Previous
work has established that this is due to alignment of NH bonds
within the central helix along the helix axis, which is also
roughly parallel to the diffusion tensor axis of symmetry,23 as
can be seen in Figure 1. Overall, the shapes of the three curves
are in good agreement with one another, but the degree of
contrast between the centralR-helix (residues 25-35) and the
surroundingâ-sheets is greater in the simulations than the
experiments. (The increased anisotropy in the top two traces in
Figure 10, compared with the bottom trace, is maintained if
the trajectory is broken into halves or quarters.) This shows
that the key qualitative features of the shape of the diffusion
tensor are reproduced in the simulation. As expected from Figure
9, dloc are largest for the simulation in SPC/E water and smallest
for the experiment.

3.4 Factorization into Internal and Overall Correlation
Functions. The extraction of a rotational diffusion tensor
from MD simulation (or from experimental relaxation data)
assumes that separation (in a statistical sense) of global tumbling
and internal motion can be achieved. In terms of the time

correlation functions of interest in NMR relaxation, this can be
expressed5

In eq 23, the reorientation of the protein is described by the
Ω terms, whereas the motion of a particular vector (e.g., a
backbone amide N-H vector) in the molecular frame is
described by the terms involvingnMF. A physical uncoupling
of overall and internal motions does not necessarily imply
factorization of the global and internal motion correlation
functions:

It is well-known that factorization cannot be exact when
overall rotation is anisotropic, even when the two types of
motion are statistically independent.5 Furthermore, a large class
of functionally relevant protein dynamics involving large
amplitude internal motions on the same time scale as global
rotation would not be expected to be factorizable. Nevertheless,
a product form for the total correlation function is often assumed
in analysis of NMR relaxation data, especially in conjunction
with the use of the Lipari-Szabo model free (LS-MF) approach.5

With this in mind, we compare the total correlation function
of backbone amide NH vectors,Ctot

MD(t), with product form
correlation functionsCrot(t)Cint(t), where the factors are given
by

In eq 25, Ω(t) denotes the time-dependent Euler angle
transformation that rotates the laboratory fixed (LF) reference
axis system into the protein molecular frame. In the present
work, Ω(t) is generated using the standard rms fitting procedure,
implemented with theptraj routine within the Amber 9 package.
Crot(t) is then determined by applyingΩ(t) to the NH vectors
of interest at their initial LF orientation (in the reference
structure). The internal correlation function,Cint(t), is simulta-
neously computed withptraj. In practice, we first computed
the time-averaged internal structure of a protein during the
trajectory and then used this average structure as the reference
structure to perform the rms fits to generate bothCrot(t) and
Cint(t).

Figure 11 shows typical internal correlation functions, which
decay to plateau values with varying internal time constants;
similar plots have been presented many times before.6,10,43,44

Many N-H vectors (such as in residues 49 in GB3 or 63 in
ubiquitin) decay to constant values on a time scale of a few
picoseconds, with order parameters (their asymptotic values)
above 0.8. It is hardly surprising that these correlation functions
factor almost perfectly. Of greater interest are floppier residues,
with order parameters less than 0.8 and internal decay times
that are comparable to overall tumbling times: see, for example,
residue 41 in GB3, whose internal correlation function decays
with a τe of 2.1 ns. Such slow decays have received much less
attention, since they can only be reliably observed with fairly
long simulations.

In Figure 12, we compareCtot
MD(τ) with Crot(τ)Cint(τ) for

selected backbone amide NH vectors. The product correlation

Figure 9. Calculated or experimental values ofDav, plotted against
inverse molecular weight. Experimental values have been adjust to 300
K and pure H2O, as described in the test.

Figure 10. Local diffusion constants, from eq 18 andτf ) 1 ns, as a
function of residue number, for GB3; experimental values are from
ref 23.
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functions are indistinguishable from the total correlation func-
tions for delays shorter than 1 ns; small deviations beyond this
are probably dominated by statistical noise in the correlation
functions. For many residues, the agreement remains good for
longer delays, including past lag times where the correlation
functions are clearly dominated by noise. Residues in both
relatively rigid secondary structure elements and those in flexible
regions can be found in this category. For a small minority of
residues (such as residue 13 in GB3), significant deviations of
Crot(τ)Cint(τ) from Ctot

MD(τ) can be found for delay times
between 1 and 3 ns. These are associated with floppy residues
located within or near flexible loops or chain termini. In these
cases, the divergences generally occur at lag times beyond which
strongly nonexponential behavior is seen in the correlation
function decays and for which statistical noise may dominate.
Thus, for almost all residues we surveyed, agreement between
the product form and the sampled total correlation functions
was excellent at least up to delays where finite trajectory length
may cause the correlation functions to have large uncertainties.

4. Conclusions

Molecular simulations of macromolecules offer a unique
window into microscopic aspects of time-dependent phenomena,
but relatively little attention has been paid to the accuracy of
current force fields in describing overall motion such as
rotational diffusion. Because the self-diffusion constants of
popular water models like TIP3P are so much larger than
experiment,9 it is long been suspected that protein diffusion
would be too fast, and this is borne out by the current
simulations. Rotational diffusion constants appear to be some-
what too large even for models like SPC/E and TIP4P/EW,
whose self-diffusion constants are in better agreement with
experiment. Rotational diffusion probes a sensitive balance
between water-water and water-protein hydrogen-bond (and
other) interactions, and work to optimize this behavior should
lead to more realistic molecular simulations. It is likely that
the details of hydration layer around proteins are inaccurate in
all common protein-water potentials. Since the amplitudes and
time scales of internal motions are likely to be coupled to overall

Figure 11. Internal correlation functions for selected residues in GB3+ SPC/E (left) and ubiquitin+ SPC/E (right). Values ofτe show the
model-free value for the decay time of these internal correlation funtions.5

Figure 12. Comparison of selected N-H correlation functions: solid lines are computed directly from the trajectory; dashed lines represent the
productCrot(τ)Cint(τ). Left, GB3 + SPC/E; right, ubiquitin+ SPC/E.
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motion, finding potentials that give a good account of global
diffusional is likely to be a prerequisite for correct simulations
of internal motions as well.

We only consider here the behavior of small, well-folded
proteins, whose global behavior is expected to conform to a
diffusion model with a single, global diffusion tensor. The
simulations for the most part bear this out, although the details
of the ubiquitin simulations (in all three water models) show a
dependence on the integration timeτf that is much larger than
than seen for the other proteins (see Figure 4). All of the
proteins, including ubiquitin, show the expected dependence of
relaxation times onl(l + 1), as shown in Figure 8. These studies
on well-folded proteins should provide a reference point for
studies of floppier systems (which are in progress), where more
significant deviations from a single-diffusion-constant model
are expected.

The statistical noise seen in the results in Figure 3 is
somewhat discouraging, if not really unexpected. In order to
follow these decays reliably, trajectories that are many times
longer than the rotational correlation time are required, and these
are still time consuming to compute. (As an example, a 100 ns
simulation of ubiquitin with SPC/E water requires about 11 days
of processing on 16 1.3 GHz Itanium processors.) The correla-
tion functions are much better determined at short delay times,
but using only short delay values runs the risk of an extrapolation
error to the much longer times of actual interest and also runs
the risk that breakdowns in the diffusion model might not be
seen until longer delays, potentially hiding some of the most
interesting results. Usingl values higher than 2 leads to
correlation functions that decay more rapidly, and there may
be some benefit in using these to estimate diffusional behavior,
again with the caveat that deviations from diffusive behavior
might be missed. Many more simulations will be required for
an optimal analysis scheme to become clear. It is also clear (as
one would expect) that fitting the anisotropy or rhombicity of
diffusion tensors requires even more extensive sampling.

Analyses of NMR relaxation data typically assume that
internal motions are statistically independent from overall
diffusion, at least for the types of well-folded systems studied
here. Our results seem to confirm this model: even though some
N-H vectors show internal decay times that are of the same
order of magnitude as overall tumbling, the product approxima-
tion in eq 24 is quite well-satisfied, as shown in Figure 12.
Again, future studies with floppier proteins should help to clarify
the range of applicability of this sort of model.
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