
1 MMPBSA.py

1.1 Introduction

This section describes the use of the python script MMPBSA.py to perform Molecular Me-
chanics / Poisson Boltzmann (or Generalized Born) Surface Area (MM/PB(GB)SA) calcula-
tions. This is a post-processing method in which representative snapshots from an ensemble
of conformations are used to calculate the free energy change between two states (typically a
bound and free state of a receptor and ligand). Free energy differences are calculated by com-
bining the so-called gas phase energy contributions that are independent of the chosen solvent
model as well as solvation free energy components (both polar and non-polar) calculated from
an implicit solvent model for each species. Entropy contributions to the total free energy may
be added as a further refinement. The entropy calculations are currently done only in the gas
phase with the nmode program in Amber or via the quasi-harmonic approximation in ptraj.

The gas phase free energy contributions are calculated by sander within the Amber program
suite according to the force field with which the topology files were created. The solvation free
energy contributions may be further decomposed into an electrostatic and hydrophobic contri-
bution. The electrostatic portion is calculated using either the linearized Poisson Boltzmann
(PB) equation or by the Generalized Born method. The PB equation is solved numerically
by either the pbsa program included with AmberTools or by the Adaptive Poisson Boltzmann
Solver (APBS) program through the iAPBS interface with Amber (for more information, see
http://www.poissonboltzmann.org/apbs). The hydrophobic contribution is approximated by the
LCPO method [2] implemented within sander.

MM/PB(GB)SA typically employs the approximation that the configurational space explored
by the systems are very similar between the bound and unbound states, so every snapshot for
each species is extracted from the same trajectory file, although MMPBSA.py will accept sepa-
rate trajectory files for each species. Furthermore, explicit solvent and ions are stripped from the
trajectory file(s) to hasten convergence by preventing solvent-solvent interactions from domi-
nating the energy terms. A more detailed explanation of the theory can be found in Srinivasan,
et. al.[1]

1.2 Installation and Testing

You must have amber9 or later to use MMPBSA.py, as it takes advantage of trajectory
analysis (imin=5) that is not present in earlier versions. Morever, make sure that you have
applied all bugfixes to date. The source code for MMPBSA.py is included in
$AMBERHOME/src/mmpbsa_py. MMPBSA.py is installed by default in a typical Amber11
installation. If you are updating the code or re-installing for any reason, you can install
MMPBSA.py by itself. You can install MMPBSA.py using the command

1

1 MMPBSA.py

cd $AMBERHOME/src/mmpbsa_py
make install

or MMPBSA.py.MPI using the command

cd $AMBERHOME/src/mmpbsa_py
make parallel

Any time you download an update to the script, you must unpack the updated Python files into
$AMBERHOME/src/mmpbsa_py and re-install per the instructions above. The Makefile in this
directory checks for the version of Python that you have, converts the files if necessary, com-
piles the modules, and puts the compiled modules and MMPBSA.py into $AMBERHOME/bin.
Python version 2 is significantly different than Python version 3, and they are not compatible.
If you have version 2, then no file conversion is necessary (as the script was written for version
2). However, if you have Python version 3, the utility 2to3 must be present to translate the
code into Python 3 syntax (this will be done automatically if 2to3 is in your path when you run
“make install”).

The parallel version of the scripts, MMPBSA.py.MPI, utilizes the python module mpi4py.
If mpi4py is not currently installed on your platform, then you must compile it before using
MMPBSA.py.MPI. Download and installation instructions for mpi4py can be found online at
http://ambermd.org/tutorials/advanced/tutorial3/py_script/compile.htm.

After you successfully install MMPBSA.py, check that everything is working in the test
directory. Use the commands

cd $AMBERHOME/test
make test.mmpbsa_py

to start the test. The test will take several minutes if it works correctly, so please be pa-
tient while it completes. If DO_PARALLEL is set then this command will automatically test
MMPBSA.py.MPI, as well. If you see a potential failure, check the TEST_FAILURES.diff file.
Minor differences are benign.

1.3 Preparing for an MM/PB(GB)SA calculation

MM/PB(GB)SA is often a very useful tool for obtaining relative free energies of binding
when comparing ligands. Perhaps its biggest advantage is that it is very computationally inex-
pensive compared to other free energy calculations, such as TI or FEP. Following the advice
given below before any MD simulations are run will make running MMPBSA.py successfully
much easier.

1.3.1 Building Topology Files

MMPBSA.py requires at least three, usually four, compatible topology files. If you plan on
running MD in explicit water, you will need a solvated topology file of the entire complex, and
you will always need a topology for the entire complex, one for just the receptor, and a final
one for just the ligand. Moreover, they must be compatible with one another (i.e. each must

2

1.3 Preparing for an MM/PB(GB)SA calculation

have the same charges for the same atoms, the same force field must be used for all three of the
required prmtops, and they must have the same PBRadii set, see LEaP for description of
pbradii). Thus, it is strongly advised that all prmtop files are created with the same script. We
run through a typical example here, though leave some of the details to other sections and
other tutorials. We will start with a system that is a large protein binding a small, one-residue
ligand. We will assume that a docked structure has already been obtained as a PDB and that
two separate PDBs have been constructed, receptor.pdb and LIG.pdb. We will also assume that
a MOL2 file was created from LIG.pdb, residue name ’LIG’, was built with charges already
derived (either through antechamber or some other method), and an frcmod file for ’LIG’ that
contains all missing parameters have already been created. Furthermore, we will use the
FF99SB force field for this example. A sample script file called, for instance, mmpbsa_leap.in,
is shown below

source leaprc.�99SB
loadAmberParams LIG.frcmod
LIG = loadMol2 LIG.mol2
receptor = loadPDB receptor.pdb
complex = combine {receptor LIG}
set default PBRadii mbondi2

saveAmberParm LIG lig.top lig.crd
saveAmberParm receptor rec.top rec.crd
saveAmberParm complex com.top com.crd

solvateOct complex TIP3PBOX 15.0
saveAmberParm complex com_solvated.top com_solvated.crd
quit

The above script, run with the command

sleap -f mmpbsa_leap.in

should produce four prmtop files, lig.top, rec.top, com.top, and com_solvated.top. Topology
files created in this manner will make running MMPBSA.py far easier. This is, of course, the
simplest case, but we briefly describe some other examples. MMPBSA.py will guess the mask
for both the receptor and ligand inside the complex topology file as long as the ligand residues
appear continuously in the complex topology file. Thus, for instance, if you’re adding two
ligands, combine the two ligands consecutively in the complex (rather than one residue at the
beginning and one at the end, for instance).

1.3.2 Running Molecular Dynamics

Not many details will be given here, as MM/PB(GB)SA is a post-processing trajectory analy-
sis technique. Molecular dynamics are run to generate an ensemble of snapshots upon which to
calculate the binding energy. This technique is most effective when the structures are not corre-
lated, which means that the simulated time between extracted snapshots should be sufficiently
large to avoid such correlation.

3

1 MMPBSA.py

There are two techniques that can be employed when running these simulations with respect
to MMPBSA.py. The first is what’s called the “single trajectory protocol” and the second of
which is called the “multiple trajectory protocol”. The first method will extract the snapshots
for the complex, receptor, and ligand from the same trajectory. This is a faster method be-
cause it requires the simulation of only a single system, but makes the assumption that the
configurational space explored by the receptor and ligand is unchanged between the bound and
unbound states. The latter method eliminates this assumption at the cost of more simulations.
MMPBSA.py requires a complex trajectory, but will accept a receptor and/or ligand trajectory
as well. Any trajectory not given to the script will be extracted from the complex trajectory.

1.4 Running MMPBSA.py

1.4.1 The input file

The input file was designed to be as syntactically similar to other programs in Amber as
possible. The input file has the same namelist structure as both sander and pmemd. The allowed
namelists are &general, &gb, &pb, &alanine_scanning, and &nmode. The input variables
recognized in each namelist are described below, but those in &general are typically variables
that apply to all aspects of the calculation. Those in &gb are unique to Generalized Born
calculations, &pb is unique to Poisson Boltzmann simulations, &alanine_scanning is unique
to alanine scanning calculations, and &nmode is unique to the normal mode calculations used
to approximate vibrational entropies. All of the input variables are described below according
to their respective namelists. Integers and floating point variables should be typed as-is while
strings should be put in either single- or double-quotes.

&general namelist variables

startframe The frame from which to begin extracting snapshots from each trajectory. This is
always the first frame read. (Default = 1)

endframe The frame from which to stop extracting snapshots from each trajectory. Any num-
ber higher than the total number of frames is automatically reduced to the last frame in
each trajectory. (Default = 1000000000)

interval The offset from which to choose frames from each trajectory file. For example, an
interval of 2 will pull every 2nd frame beginning at startframe and ending less than or
equal to endframe. (Default = 1)

receptor_mask The mask that specifies the receptor residues within the complex prmtop (NOT
the solvated prmtop if there is one). The default guess is generally sufficient and will
only fail if the ligand residues are not found in succession within the complex prmtop.
You should not specify a receptor_mask unless you know your ligand residues are non-
continuous in your prmtop. If they are continuous, but the program still complains that it
cannot find a suitable mask, your topology files are likely inconsistent. It uses the “Amber
mask” syntax described elsewhere in the Amber manuals. This will be replaced with the
default receptor_mask if ligand_mask (below) is not also set.

4

1.4 Running MMPBSA.py

ligand_mask The mask that specifies the ligand residues within the complex prmtop (NOT the
solvated prmtop if there is one). The default guess is generally sufficient and will only
fail when stated above. This follows the same description as the receptor_mask above.

verbose The variable that specifies how much output is printed in the output file. There are
three allowed values: 0, 1, and 2. A value of 0 will simply print difference terms, 1 will
print all complex, receptor, and ligand terms, and 2 will also print bonded terms if one
trajectory is used. (Default = 1)

keep_files The variable that specifies which temporary files are kept. All temporary files have
the prefix “_MMPBSA_” prepended to them. Allowed values are 0, 1, and 2. 0: Keep
no temporary files, 1: Keep all generated trajectory files and output files created by
sander, nmode, and ptraj, 2: Keep all temporary files. Temporary files are only deleted if
MMPBSA.py completes successfully. (Default = 1)

strip_mdcrd The variable used to tell the MMPBSA.py whether or not to strip the mask spec-
ified by “strip_mask” from the trajectory. Allowed values are
0: Do not strip anything from the given mdcrds
1: Strip “strip_mask” from the given mdcrds (Default)

strip_mask The variable that specifies which atoms are stripped from the trajectory file if
strip_mdcrd above is 1. (Default = “:WAT:Cl-:CIO:Cs+:IB:K+:Li+:MG2:Na+:Rb+”)
(see Advanced Options before changing)

entropy Specifies whether or not a quasi-harmonic entropy approximation is made with ptraj.
Allowed values are 0: Don’t. 1: Do (Default = 0)

&gb namelist variables (More thorough descriptions of each can be found in the Amber
manual)

igb Generalized Born method to use. See the description in the Amber manual. Allowed values
are 1, 2, 5, and 7. (Default = 5)

gbsa Option to carry out Generalized Born/Surface Area simulations. See the description in
the Amber manual. Allowed values are 0, 1, and 2. (Default = 1)

saltcon Salt concentration in Molarity. (Default = 0.0)

surften Surface tension value (Default = 0.0072)

surfoff Offset to correct (by addition) the value of the non-polar contribution to the solvation
free energy term (Default = 0.0)

&pb namelist variables (More thorough descriptions of each can be found in the Amber
manual)

indi Internal dielectric constant (Default = 1.0)

exdi External dielectric constant (Default = 80.0)

5

1 MMPBSA.py

scale Resolution of the Poisson Boltzmann grid. It is equal to the reciprocal of the grid spacing.
(Default = 2.0)

linit Maximum number of iterations of the linear Poisson Boltzmann equation to try (Default
= 1000)

prbrad Solvent probe radius in Angstroms. Allowed values are 1.4 and 1.6 (Default = 1.4)

istrng Ionic strength in Molarity. It is converted to mM for PBSA and kept as M for APBS.
(Default = 0.0)

inp Nonpolar optimization method (Default = 1)

cavity_surften Surface tension. (Default = 0.00542 kcal/mol Angstrom2). Unit conversion to
kJ done automatically for APBS.

cavity_offset Offset value used to correct nonpolar free energy contribution (Default = -1.008)
This is not used for APBS.

fillratio The ratio between the longest dimension of the rectangular finite-difference grid and
that of the solute (Default = 4.0)

radiopt The option to set up atomic radii according to 0: the prmtop, or 1: pre-computed values
(see Amber manual for more complete description). (Default = 0)

sander_apbs Option to use APBS for PB calculation instead of the built-in PBSA solver. This
will work only through the iAPBS interface that creates sander.APBS. Instructions for
this can be found online at the iAPBS/APBS websites. Allowed values are 0: Don’t use
APBS, or 1: Use sander.APBS. (Default = 0)

&alanine_scanning namelist variables

mutant_only Option to perform specified calculations only for the mutants. Allowed values
are 0: Do mutant and original or 1: Do mutant only (Default = 0)

Note that all calculation details are controlled in the other namelists, though for alanine scanning
to be performed, the namelist must be included (blank if desired)

&nmode namelist variables

dielc Distance-dependent dielectric constant (Default = 1.0)

drms Convergence criteria for minimized energy gradient. This value is used in the sander
minimizations, but is multiplied by 10 for use in nmode. (Default = 0.0001)

maxcyc Maximum number of minimization cycles to use per snapshot in sander. (Default =
10000)

nmstartframe Frame number to begin performing nmode calculations on (Default = 1) *

6

1.4 Running MMPBSA.py

nmendframe Frame number to stop performing nmode calculations on (Default = 1000000000)
*

nminterval Offset from which to choose frames to perform nmode calculations on (Default =
1) *

ala_entropy Determines whether to perform nmode analysis on alanine scanning mutants or
not. 0: Don’t. 1: Do. (Default 1)

nmode_igb Value for Generalized Born model to be used in nmode calculations. 0: Vacuum,
1: GB model (Default 1)

nmode_istrng Ionic strength to use in nmode calculation in molarity. Can only be non-zero if
nmode_igb=1.

* These variables will choose a subset of the frames chosen from the variables in the &general
namelist. Thus, the “trajectory” from which snapshots will be chosen for nmode calculations
will be the collection of snapshots upon which the other calculations were performed.

&decomp namelist variables (available only for Amber 11)

idecomp Energy decomposition scheme to use:
1 - Per-residue decomposition with 1-4 VDW and 1-4 EEL terms added to internal po-
tential terms
2 - Per-residue decomposition with 1-4 VDW added to VDW and 1-4 EEL added to EEL
potential terms
3 - Pair-wise decomposition with 1-4 VDW and 1-4 EEL added to internal potential terms
4 - Pair-wise decomposition with 1-4 VDW added to VDW and 1-4 EEL added to EEL
potential terms
(No default. This must be specified!)

print_res Select residues from the complex prmtop to print. The receptor/ligand residues will
be automatically figured out if ligand_mask and/or receptor_mask was omitted from the
&general namelist! If you specify your own masks, you will need to provide your own
mdin files and use the -use-mdins flag. If you do not use -use-mdins, MMPBSA.py will
create template mdin files for you to edit and MMPBSA.py will terminate. You must
then edit them, putting in the correct residue strings (see appropriate section of Amber
manual), and re-run with the -use-mdins flag. Also note that per-residue energy changes
will only be printed if the default masks are guessed by MMPBSA.py. This variable
accepts semi-colon-delimited lists of residue numbers or ranges. For example: print_res
= “1; 3-10; 15; 100”. This will print residues 1, 3 through 10, 15, and 100 from the
complex prmtop and the corresponding residues in either the ligand or receptor prmtops.
(Default: print all residues). *

dec_verbose Set the level of output to print in the decomp_output file. 0: DELTA energy,
total contribution only. 1: DELTA energy, total, sidechain, and backbone contributions.
2: Complex, Receptor, Ligand, and DELTA energies, total contribution only. 3: Complex,

7

1 MMPBSA.py

Receptor, Ligand, and DELTA energies, total, sidechain, and backbone contributions (all
data) (Default 0)

* Please note: Using idecomp=3 or 4 (pairwise) with a very large number of printed residues
and a large number of frames can quickly create very, very large temporary mdout files. Large
print selections will also demand a large amount of memory to analyze and compose the de-
composition output file (~500 MB for 250 residues printing every pair). It is not unusual for the
output file to take several minutes to compile if you print a large number of residues for a large
number of frames.

Sample input files

Sample input �le for GB and PB calculation
&general
startframe=5, endframe=100, interval=5,
verbose=2, keep_�les=0,

/
&gb
igb=5, saltcon=0.150,

/
&pb
istrng=0.15, �llratio=4.0

/
--
Sample input �le for Alanine scanning
&general
verbose=2,

/
&gb
igb=2, saltcon=0.10

/
&alanine_scanning
/
--
Sample input �le with nmode analysis
&general
startframe=5, endframe=100, interval=5,
verbose=2, keep_�les=2,

/
&gb
igb=5, saltcon=0.150,

/
&nmode
nmstartframe=2, nmendframe=20, nminterval=2,
maxcyc=50000, drms=0.0001,

8

1.4 Running MMPBSA.py

/
--
Sample input �le with decomposition analysis
&general
startframe=5, endframe=100, interval=5,

/
&gb
igb=5, saltcon=0.150

/
&decomp
idecomp=2, dec_verbose=3,
print_res=�20; 40 - 80; 200�

/

A few important notes about input files. Comments are allowed by placing a # at the beginning
of the line (whitespace is ignored). Variable initialization cannot span multiple lines. In-line
comments (i.e. putting a # for a comment after a variable is initialized in the same line) is
not allowed and will result in an input error. Variable declarations must be comma-delimited,
though all whitespace is ignored (except for newline characters). Finally, all lines between
namelists are ignored, so comments may be put before each namelist without using #.

1.4.2 Calling MMPBSA.py from the command-line

MMPBSA.py is invoked through the command line as follows:

MMPBSA.py {-O} -i input_�le \
-o output_�le \
-sp solvated_prmtop \
-cp complex_prmtop \
-rp receptor_prmtop \
-lp ligand_prmtop \
-y mdcrd1 mdcrd2 mdcrd3 ... mdcrdN \
{-do decomp_output_�le} \
{-yr receptor_mdcrd1 ... receptor_mdcrdN}\
{-yl ligand_mdcrd1 ... ligand_mdcrdN}\
{-mc mutant_complex_prmtop}\
{-mr mutant_receptor_prmtop}\
{-ml mutant_ligand_prmtop}\
{-slp solvated_ligand_prmtop}\
{-srp solvated_receptor_prmtop}\
{-make-mdins || -use-mdins || -rewrite-output}

Unless otherwise specified, default file names are those shown on the command-line. Do not
put quotations around strings on the command line. Items shown above can only be placed on
the command-line. All items in braces are optional. All others (except solvated_prmtop when
strip_mdcrd=1) are mandatory unless you wish to use the default names. Optional files have no
defaults.

9

1 MMPBSA.py

-O If present, overwrite any existing output file.

-i Input file, default is no input file and all default values will be used.

-o Output file name (Default FINAL_RESULTS_MMPBSA.dat)

-sp Solvated complex topology file (unnecessary if strip_mdcrd=0).

-cp Complex topology file

-rp Receptor topology file

-lp Ligand topology file

-y Comma- and/or whitespace-delimited list of complex trajectory files to analyze
(Default = mdcrd)

-do Decomposition output file name (Default FINAL_DECOMP_MMPBSA.dat)

-yr Comma- and/or whitespace-delimited list of receptor trajectory files to analyze

-yl Comma- and/or whitespace-delimited list of ligand trajectory files to analyze

-mc Mutant complex topology file. Default is shown if &alanine_scanning is specified

-mr Mutant receptor topology file. No default, as mutation can be in either receptor or
ligand.

-ml Mutant ligand topology file. No default, as mutation can be in either receptor or
ligand.

-slp Solvated ligand topology file, which is required if -yl is specified and strip_mdcrd=1

-srp Solvated receptor topology file, which is required if -yr is specified and strip_mdcrd=1

-make-mdins This option will cause MMPBSA.py to create all mdin files used by sander and
exit so they can be edited (see Advanced Options)

-use-mdins This option will cause MMPBSA.py to use existing mdin files for sander rather
than creating them and using those (see Advanced Options)

-rewrite-output This option will cause MMPBSA.py to use existing temporary output files to
compile the final output file containing the MM/PBSA statistics. This allows you
to re-print the output file without having to re-run the calculation. However, you
must still provide the appropriate topology files and input file so MMPBSA.py can
determine what it should be printing (and it also extracts information from these
files to print to the final output files). It will compile both the regular and decom-
position output files if specified. This is especially useful for changing the level of
verbosity (see input sections below). See description in “Advanced Options” below
for a more thorough discussion.

–help (Also invoked by -h) Display usage statement and quit

10

1.4 Running MMPBSA.py

–clean (Also invoked by –clear) Remove all temporary files that MMPBSA.py creates (to
clean up after a previous calculation)

The last two options should appear alone on the command-line after MMPBSA.py if they are
to be used. Also, if an input file is specified along with -make-mdins, then the script will make
all mdin files pertinent to the input file and quit. This is, for example, the only way to create an
input file for use with sander.APBS that you wish to edit by hand (you must put sander_apbs=1
in the &pb namelist).

MMPBSA.py.MPI can be invoked similar to other parallel executables in Amber. See More
information on parallel machines or clusters in the Amber manual for more details.

1.4.3 The Output File

The header of the output file will contain information about the calculation. It will show a
copy of the input file as well as all files that were used in the calculation (topology files and
coordinate file(s)). If the masks were not specified, it prints its best guess so that you can verify
its accuracy, along with the residue name of the ligand (if it is only a single residue).

The energy and entropy contributions are broken up into their components as they are in
sander and nmode or ptraj. The contributions are further broken into Ggas and Gsolv. The
polar and non-polar contributions are EGB (or EPB) and ESURF (or ECAVITY / ENPOLAR),
respectively for GB (or PB) calculations.

By default, bonded terms are not printed for any one-trajectory simulation. They are com-
puted and their differences calculated, however. They are not shown (nor included in the total)
unless specifically asked for because they should cancel completely. A single trajectory does
not produce any differences between bond lengths, angles, or dihedrals between the complex
and receptor/ligand structures. Thus, when subtracted they cancel completely. This includes
the BOND, ANGLE, DIHED, and 1-4 interactions. If inconsistencies are found, these values
are displayed and inconsistency warnings are printed. When this occurs the results are gener-
ally useless. Of course this does not hold for the multiple trajectory protocol, and so all energy
components are printed in this case.

Finally, all warnings generated during the calculation that do not result in fatal errors are
printed at the bottom of the output file.

1.4.4 Temporary Files

MMPBSA.py creates working files during the execution of the script beginning with the
prefix _MMPBSA_. The variable “keep_files” controls how many of these files are kept after
the script finishes successfully. If the script quits in error, all files will be kept. You can clean
all temporary files from a directory by running MMPBSA.py –clean described above.

If MMPBSA.py does not finish successfully, several of these files may be helpful in diagnos-
ing the problem. For that reason, every temporary file is described below. Note that not every
temporary file is generated in every simulation. At the end of each description, the lowest value
of “keep_files” that will retain this file will be shown in parentheses.

_MMPBSA_gb.mdin Input file that controls the GB calculation done in sander. (2)

11

1 MMPBSA.py

_MMPBSA_pb.mdin Input file that controls the PB calculation done in sander. (2)

_MMPBSA_cenptraj.in Input file that extracts requested snapshots from the given mdcrd files,
centers and images the complex to correct for imaging artifacts, strips water and
ions, and dumps the resulting snapshots into a temporary mdcrd file. This file is
processed by ptraj. (2)

_MMPBSA_complex.mdcrd Trajectory file printed out by _MMPBSA_cenptraj.in that con-
tains only those snapshots that will be processed by MMPBSA.py. (1)

_MMPBSA_ligtraj.in Input file that processes ligand trajectories the same way as _MMPBSA_cenptraj.in
does above if ligand trajectories are supplied. Otherwise, it loads the _MMPBSA_complex.mdcrd,
strips the receptor mask, and dumps the ligand trajectory. This file is processed by
ptraj. (2)

_MMPBSA_ligand.mdcrd Trajectory file printed out by _MMPBSA_ligtraj.in that contains
only those snapshots that will be processed by MMPBSA.py. (1)

_MMPBSA_rectraj.in Input file that processes receptor trajectories the same way as _MMPBSA_cenptraj.in
does above if receptor trajectories are supplied. This file is processed by ptraj. (2)

_MMPBSA_receptor.mdcrd Trajectory file printed out by _MMPBSA_rectraj.in that contains
only those snapshots that will be processed by MMPBSA.py (1)

_MMPBSA_complexinpcrd.in Input file that extracts the first frame from _MMPBSA_complex.mdcrd
to use as a dummy inpcrd file for the GB and PB calculations. This is necessary
for using imin=5 functionality in sander. This file is processed by ptraj. (2)

_MMPBSA_receptorinpcrd.in Same as above, but for receptor. (2)

_MMPBSA_ligandinpcrd.in Same as above, but for ligand. (2)

_MMPBSA_dummycomplex.inpcrd Dummy inpcrd file generated by _MMPBSA_complexinpcrd.in
for use with imin=5 functionality in sander. (1)

_MMPBSA_dummyreceptor.inpcrd Same as above, but for the receptor. (1)

_MMPBSA_dummyligand.inpcrd Same as above, but for the ligand. (1)

_MMPBSA_complex_nm.in Input file that extracts complex snapshots and dumps them into
separate restart files. This file is processed by ptraj. (2)

_MMPBSA_rectraj_nm.in Same as above, but for receptor. (2)

_MMPBSA_ligtraj_nm.in Same as above, but for ligand. (2)

_MMPBSA_complex_nm.inpcrd.# Inpcrd files that are the extracted snapshots by _MMPBSA_complex_nm.in.
(1)

_MMPBSA_receptor_nm.inpcrd.# Inpcrd files that are extracted snapshots by _MMPBSA_rectraj_nm.in.
(1)

12

1.4 Running MMPBSA.py

_MMPBSA_ligand_nm.inpcrd.# Inpcrd files that are extracted snapshots by _MMPBSA_ligtraj_nm.in.
(1)

_MMPBSA_ptrajentropy.in Input file that calculates the entropy via the quasi-harmonic ap-
proximation. This file is processed by ptraj. (2)

_MMPBSA_avgcomplex.pdb PDB file containing the average positions of all complex confor-
mations processed by _MMPBSA_cenptraj.in. It is used as the reference for the
_MMPBSA_ptrajentropy.in file above. (1)

_MMPBSA_complex_entropy.out File into which the entropy results from _MMPBSA_ptrajentropy.in
analysis on the complex are dumped. (1)

_MMPBSA_receptor_entropy.out Same as above, but for the receptor. (1)

_MMPBSA_ligand_entropy.out Same as above, but for the ligand. (1)

_MMPBSA_ptraj1.out Output from running ptraj using _MMPBSA_cenptraj.in. (1)

_MMPBSA_ptraj2.out Output from running ptraj using _MMPBSA_ligtraj.in. (1)

_MMPBSA_ptraj3.out Output from running ptraj using _MMPBSA_rectraj.in. (1)

_MMPBSA_ptraj4.out Output from running ptraj using _MMPBSA_complexinpcrd.in. (1)

_MMPBSA_ptraj5.out Output from running ptraj using _MMPBSA_receptorinpcrd.in. (1)

_MMPBSA_ptraj6.out Output from running ptraj using _MMPBSA_ligandinpcrd.in. (1)

_MMPBSA_ptraj7.out Output from running ptraj using _MMPBSA_mutant_ligtraj.in. (1)

_MMPBSA_ptraj8.out Output from running ptraj using _MMPBSA_mutant_rectraj.in. (1)

_MMPBSA_ptraj9.out Output from running ptraj using _MMPBSA_mutant_complexinpcrd.in.
(1)

_MMPBSA_ptraj10.out Output from running ptraj using _MMPBSA_mutant_receptorinpcrd.in.
(1)

_MMPBSA_ptraj11.out Output from running ptraj using _MMPBSA_mutant_ligandinpcrd.in.
(1)

_MMPBSA_ptraj12.out Output from running ptraj using _MMPBSA_complex_nm.in. (1)

_MMPBSA_ptraj13.out Output from running ptraj using _MMPBSA_ligtraj_nm.in. (1)

_MMPBSA_ptraj14.out Output from running ptraj using _MMPBSA_rectraj_nm.in (1)

_MMPBSA_ptraj15.out Output from running ptraj using _MMPBSA_mutant_complex_nm.in.
(1)

_MMPBSA_ptraj16.out Output from running ptraj using _MMPBSA_mutant_ligtraj_nm.in.
(1)

13

1 MMPBSA.py

_MMPBSA_ptraj17.out Output from running ptraj using _MMPBSA_mutant_rectraj_nm.in
(1)

_MMPBSA_ptraj_entropy.out Output from running ptraj using _MMPBSA_ptrajentropy.in.
(1)

_MMPBSA_complex_gb.mdout sander output file containing energy components of all com-
plex snapshots done in GB. (1)

_MMPBSA_receptor_gb.mdout sander output file containing energy components of all recep-
tor snapshots done in GB. (1)

_MMPBSA_ligand_gb.mdout sander output file containing energy components of all ligand
snapshots done in GB. (1)

_MMPBSA_complex_pb.mdout sander output file containing energy components of all com-
plex snapshots done in PB. (1)

_MMPBSA_receptor_pb.mdout sander output file containing energy components of all recep-
tor snapshots done in PB. (1)

_MMPBSA_ligand_pb.mdout sander output file containing energy components of all ligand
snapshots done in PB. (1)

_MMPBSA_pbsanderoutput.junk File containing the information dumped by sander.APBS to
STDOUT. (1)

_MMPBSA_ligand_nm.pdb.# Restart file of minimized ligand snapshot prepared for nmode.
(1)

_MMPBSA_complex_nm.pdb.# Restart file of minimized complex snapshot prepared for nmode.
(1)

_MMPBSA_receptor_nm.pdb.# Restart file of minimized receptor snapshots prepared for nmode.
(1)

_MMPBSA_ligand_nm.out Output file from nmode that contains the entropy data for the lig-
and for all snapshots. (1)

_MMPBSA_receptor_nm.out Output file from nmode that contains the entropy data for the
receptor for all snapshots. (1)

_MMPBSA_complex_nm.out Output file from nmode that contains the entropy data for the
complex for all snapshots. (1)

_MMPBSA_mutant_... These files are analogs of the files that only start with _MMPBSA_
described above, but instead refer to the mutant system.

14

1.4 Running MMPBSA.py

1.4.5 Advanced Options

The default values for the various parameters as well as the inclusion of some variables
over others in the general MMPBSA.py input file were chosen to cover the majority of all
MM/PB(GB)SA calculations that would be attempted while maintaining maximum simplic-
ity. However, there are situations in which MMPBSA.py may appear to be restrictive and
ill-equipped to address. Attempts were made to maintain the simplicity described above while
easily providing users with the ability to modify most aspects of the calculation easily and
without editing the source code.

-use-mdins This flag will prevent MMPBSA.py from creating the input files that control the
various calculations (_MMPBSA_gb.mdin, _MMPBSA_pb.mdin, _MMPBSA_sander_nm_min.mdin,
and _MMPBSA_nmode.in). It will instead attempt to use existing input files (though
they must have those names above!) in their place. In this way, the user has full control
over the calculations performed, however care must be taken. The mdin files created by
MMPBSA.py have been tested and are (generally) known to be consistent. Modifying
certain variables (such as imin=5) may prevent the script from working, so this should
only be done with care. It is recommended that users start with the existing mdin files
(generated by the flag below), and add and/or modify parameters from there.

-make-mdins This flag will create all of the mdin and input files used by sander and nmode so
that additional control can be granted to the user beyond the variables detailed in the input
file section above. The files created are _MMPBSA_gb.mdin which controls GB calcula-
tion; _MMPBSA_pb.mdin which controls the PB calculation; _MMPBSA_sander_nm_min.mdin
which controls the sander minimization of snapshots to be prepared for nmode calcula-
tions; and _MMPBSA_nmode.in which controls the nmode calculation. If no input file
is specified, all files above are created with default values, and _MMPBSA_pb.mdin is
created for AmberTools’s pbsa. If you wish to create a file for sander.APBS, you must
include an input file with “sander_apbs=1” specified to generate the desired input file.
Note that if an input file is specified, only those mdin files pertinent to the calculation
described therein will be created!

-rewrite-output This flag will compile the output files from _MMPBSA_complex_gb.mdout,
_MMPBSA_receptor_gb.mdout, _MMPBSA_ligand_gb.mdout, the corresponding ’pb’
files, the nmode output files, and all _MMPBSA_mutant_ versions of each. The _MMPBSA_ptraj__.out
files must also exist, as those are parsed to obtain the number of frames analyzed by each
method (_MMPBSA_ptraj1.out for gb, pb, and alanine scanning, and _MMPBSA_ptraj12.out
for normal mode analysis). All of these files will be kept by setting keep_files=1 in the
&general namelist, which is its default value. The only information gleaned from the in-
put file is the values of verbose/dec_verbose, and which types of calculations are run (gb,
pb, decomp, nmode, using sander.APBS, etc.). It uses the input file to determine which
files to look for. Thus, changing startframe, endframe, interval, etc. will NOT change the
subset of frames used to form the final statistics.

strip_mask This input variable allows users to control which atoms are stripped from the tra-
jectory files associated with solvated_prmtop. In general, counterions and water molecules
are stripped, and the complex is centered and imaged (so that if iwrap caused the ligand

15

1 MMPBSA.py

to “jump” to the other side of the periodic box, it is replaced inside the active site). If
there is a specific metal ion that you wish to include in the calculation, you can prevent
ptraj from stripping this ion by NOT specifying it in strip_mask.

strip_mdcrd strip_mdcrd=1 is used if there are no molecules to be stripped from the initial
trajectory file (rendering solvated_prmtop unnecessary). This is particularly useful if you
wish to perform more complex MM/PBSA calculations. For instance, if there is a bound
water molecule, or a particular bound ion that is important to include in either the receptor
or ligand, then you must pre-process the trajectory file such that it includes precisely those
water(s) and/or ion(s) that you wish to keep. They must also be present in the topology
files such that the trajectories and topology files remain consistent.

Please send any bug reports, comments, or suggestions to mmpbsa.amber@gmail.com. Thanks!

16

Bibliography

[1] J. Srinivasan, T.E. Cheatham, III, P. Cieplak, P. Kollman, and D.A. Case. Continuum sol-
vent studies of the stability of DNA, RNA, and phosphoramidate–DNA helices. J. Am.
Chem. Soc., 120:9401–9409, 1998.

[2] J. Weiser, P.S. Shenkin, and W.C. Still. Approximate Atomic Surfaces from Linear Combi-
nations of Pairwise Overlaps (LCPO). J. Computat. Chem., 20:217–230, 1999.

17

	MMPBSA.py
	Introduction
	Installation and Testing
	Preparing for an MM/PB(GB)SA calculation
	Building Topology Files
	Running Molecular Dynamics

	Running MMPBSA.py
	The input file
	Calling MMPBSA.py from the command-line
	The Output File
	Temporary Files
	Advanced Options

	Bibliography

