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We report the results of a molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium
hexafluorophosphate [bmim][PF6], a widely studied ionic liquid. An all-atom force field is developed using
a combination of density functional theory calculations and CHARMM 22 parameter values. Molecular
dynamics simulations are carried out in the isothermal-isobaric ensemble at three different temperatures.
Quantities computed include infrared frequencies, molar volumes, volume expansivities, isothermal com-
pressibililties, self-diffusivities, cation-anion exchange rates, rotational dynamics, and radial distribution
functions. Computed thermodynamic properties are in good agreement with available experimental values.

1. Introduction

The term ionic liquid (IL) has been coined in recent years to
describe a class of organic salts that are liquid in their pure
state at or near room temperature.1 Some of the more widely
studied ILs consist of a heterocyclic cation based on a substituted
pyridine or imidazole and an inorganic anion. Early studies
focused on compounds with the [AlCl4]- anion, but these liquids
proved to be unstable in air. This problem was overcome2

through the use of alternative anions such as [BF4]-, [NO3]-,
[CH3COO]-, and [PF6]-. These stable ILs have attracted a great
deal of interest because of their potential as nonvolatile (and
hence potentially environmentally benign) solvents.3 They also
show potential for a range of other applications including
separations, industrial cleaning, fuel cells, lubricants, and heat
transfer fluids.4

Compared to conventional organic solvents, relatively little
is known about the thermodynamic and transport properties of
ILs and how these properties relate to chemical constitution and
structure. In addition to experimental efforts directed at this
problem, a few theoretical studies have been reported in which
quantum chemical5 and classical condensed phase simulations6-8

were used to examine structural and thermophysical properties
of water-stable ILs. Other theoretical studies have focused on
chloroaluminate-based ILs.9-11

The present work reports results of single molecule quantum
chemical calculations and condensed phase classical molecular
dynamics (MD) simulations on the ionic liquid 1-n-butyl-3-
methylimidazolium hexafluorophosphate, which will be abbre-
viated as [bmim][PF6]. Figure 1 shows the optimized geometry
of a single [bmim][PF6] molecule in the gas phase, obtained
from a density functional theory calculation (see below). The
atom labels shown in this figure will be referred to throughout
the work.

2. Force Field

The extent to which a classical molecular simulation ac-
curately predicts thermophysical properties depends on the
quality of the force field used to model the interactions in the

fluid. In this work, we have used a standard molecular
mechanics force field,12 with functional form

whereVtot is the total energy of the system, harmonic potentials
govern bond length, bond angle, and improper angle motion
about nominal valuesro, θ0, and ψ0 and dihedral angles are
modeled using a standard cosine series. The Lennard-Jones
parameters for unlike atoms,εij and rmin,ij, are obtained using
the Lorentz-Berthelot combining rule. Coulombic interactions
are modeled using fixed partial charges on each atom center.* To whom correspondence should be addressed. E-mail: ed@nd.edu.

Figure 1. Geometry optimized structure of [bmim][PF6] with atom
labels noted.
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With the exception ofr0, θ0, andψ0 all cation intramolecular
and Lennard-Jones parameters in eq 1 were taken directly from
the CHARMM 22 force field13 and used without modification.
For the anion, bond length and bond angle parameters were
derived from ab initio calculations, as described below.
CHARMM 22 Lennard-Jones parameters were used for phos-
phorus and fluorine.

The minimum-energy geometry of the [bmim] cation and the
[PF6] anion was determined by performing ab initio geometry

optimizations on the isolated cation and anion at the B3LYP/
6-311+G* level of theory using Gaussian 98.14 Cation and anion
charges were set at+1 and -1, respectively. The resulting
minimized structure was used to setr0, θ0, andψ0. Geometry
optimization was also carried out on the [bmim][PF6] pair at
the same level of theory. The anion was initially located well
away (over 10 Å) from the cation and facing the imidazolium
C2-carbon side. The minimum energy structure agrees very well
with the results of Meng et al.5 Partial atomic charges were
derived from this geometry using the CHELPG15 method. A
listing of all force field parameters is given in Tables 1 and 2.
We note that the pair calculations yielded total charges on the
cation and anion of+0.904 and-0.904, respectively. In
addition, the anion is slightly polarized (i.e., the charges on the
fluorine atoms are not symmetric). For most of the simulations,
we used these partial charges as a simple approximation of the
induced polarization of the ions that occur in the liquid. This
turned out not to be essential, given that the anion exhibited no
preferential orientation relative to the nearest cation, as deter-
mined by monitoring the fraction of the time a given fluorine
atom was closest to the C2 carbon of the cation. We also
performed simulations on an anion with symmetric charges
totaling -0.904 and found essentially no difference in the
computed properties.

The force constantskb andkθ for the anion were determined
by performing a vibrational analysis on the geometry-optimized
pair within Gaussian 98. The normal modes corresponding to

TABLE 1: Partial Atomic Charges and Lennard-Jones
Parameters Used in This Work

atom
qi

(e)
rmin,i

(Å)
εi

(kJ mol-1) atom
qi

(e)
rmin,i

(Å)
εi

(kJ mol-1)

C4 -0.141 3.600 0.209 H9 0.055 2.680 0.117
C5 -0.217 3.600 0.209 H10 0.001 2.680 0.117
N1 0.111 3.700 0.837 C9 0.256 4.020 0.234
C2 0.056 3.600 0.209 H11 -0.029 2.680 0.117
N3 0.133 3.700 0.837 H12 -0.099 2.680 0.117
H2 0.181 2.936 0.033 C10 -0.209 4.080 0.326
H3 0.207 2.936 0.033 H13 0.051 2.680 0.100
H1 0.177 1.800 0.192 H14 0.040 2.680 0.100
C6 -0.157 4.550 0.084 H15 0.075 2.680 0.100
H4 0.125 2.640 0.092 P1 1.458 4.30 2.448
H5 0.073 2.640 0.092 F1 -0.421 3.400 0.377
H6 0.142 2.640 0.092 F2 -0.426 3.400 0.377
C7 0.095 4.550 0.084 F3 -0.368 3.400 0.377
H7 0.055 2.680 0.092 F4 -0.368 3.400 0.377
H8 0.045 2.680 0.092 F5 -0.364 3.400 0.377
C8 -0.122 4.020 0.234 F6 -0.414 3.400 0.377

TABLE 2: Bond, Angle, Dihedral, and Improper Force Constants

force force constant force force constant

bonds kb (kJ mol-1 Å-2) r0 (Å) bonds kb (kJ mol-1 Å-2) r0 (Å)

C6-N3 220.0 1.470 C7-H7,8 1.091
C7-N1 220.0 1.483 C8,9-H9,10,11,12 1.096
C5,4-N1,3 400.0 1.382 C10-H13,14,15 1.093
C2-N1,3 400.0 1.337 C7-C8 200.0 1.530
C4-C5 410.0 1.361 C8-C9 222.5 1.534
C2-H1 1.078 C9-C10 222.5 1.530
C4,5-H2,3 1.078 P-F 260.3 1.646
C6-H4,5,6 1.089

angles kθ (kJ mol-1 rad-2) θ0 (deg) angles kθ (kJ mol-1 rad-2) θ0 (deg)

C8-C7-N1 140.0 112.6 H4,5,6-C6-H 35.5 109.3
C5,4-N1,3-C2 130.0 125.9 H7,8-C7-H 35.5 107.2
H4,5,6-C6-N3 30.0 109.6 H7,8-C7-C8 33.4 111.5
H1-C2-N1,3 30.0 106.8 H9,10-C8-C7 33.4 109.5
N1-C5-C4 130.0 107.2 C7,8-C8,9-C9,10 58.4 111.6
N1-C2-N3 130.0 109.1 H-C8,9-H 34.5 106.4
N1,3-C2-H1 25.0 125.5 C8,9-C9,10-H 34.6 109.7
H2,3-C4,5-C 25.0 130.8 H13,14,15-C10-H 35.5 107.6
N3-C4-H2 25.0 122.1 F-P-F 194.1 90.0

dihedral kø (kJ mol-1) n δ (deg) dihedral kø (kJ mol-1) n δ (deg)

C2-N3-C4-C5 14.0 2 180 H2-C4-N3-C2 3.0 2 180
N1-C5-C4-N3 14.0 2 180 N1,3-C5,4-C4,5-H2,3 3.0 2 180
N1-C2-N3-C4 14.0 2 180 N1,3-C2-N3,1-C6,7 0.0 2 180
H1-C2-N1,3-C5,4 3.0 2 180 H1-C2-N3,1-C6,7 0.0 2 180
H2-C4-C5-H3 2.0 2 180 H2,3-C4,5-N3,1-C6,7 0.0 2 180
C4,5-C5,4-N1,3-C7,6 0.0 1 0 C2-N1,3-C7,6-H 0.195 2 180

dihedral kø (kJ mol-1) n δ (deg) dihedral kø (kJ mol-1) n δ (deg)

C4,5-N3,1-C6,7-H 0.0 3 0 N1-C7-C8-H9,10 0.0 3 0
C2-N3,1-C7-C8 0.1 3 180 C7-C8-C9-C10 0.15 1 0
C5-N1-C7-C8 0.2 4 0 H7,8-C7-C8-H9,10 0.195 3 0
N1-C7-C8-C9 0.0 3 0 H,C-C8-C9-H,C 0.195 3 0
H,C-C9-C10-H 0.16 3 0

improper kψ (kJ mol-1 rad-2) ψ0 (deg) improper kψ (kJ mol-1 rad-2) ψ0 (deg)

H1-N1-N3-C2 0.50 0 H2,3-N3,1-C4,5-C 0.5 0
N1,3-C4,5-C2-C6,7 0.6 0
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the stretching of a P-F bond and the bending of an F-P-F
bond were identified using Gaussview, a graphical interface for
the Gaussian program, and the computed vibrational frequencies
were used to calculate the corresponding harmonic force
constants. The geometry and force constants for the cation and
anion are summarized in Table 2. In a similar manner,
vibrational assignments for the major fundamental modes of
the pair were made and compared against experimental infrared
spectroscopy measurements,16,17 as described in the Results
section.

3. Simulation Details

Molecular dynamics simulations of 300 [bmim] cations and
300 [PF6] anions were performed with the program NAMD18

version 2.4 in a cubic cell with standard periodic boundary
conditions. The simulations were carried out in the isothermal-
isobaric (NPT) ensemble using a Nose´-Hoover barostat to
maintain a pressure of 0.98 atm. The temperature was controlled
via Langevin dynamics with a damping factor of 5 ps-1. Initial
configurations were generated by randomly inserting cation-
anion pairs into the simulation box. To prevent overlap, an
insertion was rejected if any of the newly inserted atoms were
within 0.75 Å of any existing atoms. The initial configurations
were relaxed using a conjugant-gradient energy minimization
scheme. For most of the simulations, the initial cell volume was
chosen to match the experimental density of the state point of
interest. All of the C-H bonds were held rigid using the
SHAKE19 algorithm. The r-RESPA20 multiple time-stepping
algorithm was used with a time step of 2 fs for bonded and van
der Waals interactions and 4 fs for electrostatic interactions.
The dispersion interactions were cut off beyond 20.0 Å. A
switching function, initiated at a distance of 18.5 Å, was used
to bring the dispersion interactions smoothly to zero at the cutoff
distance. Long-range electrostatic interactions were computed
using the particle mesh Ewald method.21,22

Prior to conducting a production run, the total energy and
cell volumes were monitored until steady-state was reached.
Equilibration times varied from 700 to 1000 ps, after which
production runs lasting 4 ns were started. The thermodynamic
properties of the system (total energy, pressure, temperature,
kinetic, and potential energy contributions) were saved to disk
every 100 time steps, and the atomic coordinates were saved to
disk every 400 time steps. All classical simulations of [bmim]-
[PF6] were conducted at atmospheric pressure (0.98 bar) and at
the temperatures 298, 323, and 343 K.

The program NAMD was chosen primarily because it is a
parallel MD program that scales remarkably well with the
number of processors. Simulations were run on a cluster of eight
Dell Precision 530 computers running Linux. Each node contains
two Intel Xeon processors operating at 1.7 GHz. A 4 ns
simulation of 300 IL molecules (9600 atoms) took approxi-
mately 300 h (12.5 days) to complete.

4. Results and Discussion

Figure 2 shows the experimental16,17and computed IR spectra
for [bmim][PF6]. The relevant peaks in the spectra are labeled
I-V. The computed frequencies of the major vibrational modes
agree well with experiment. Using Gaussview, peak I was
visually identified as the out-of-plane bending of the C2-N1-
C5 angle in the imidazolium ring, peak II is the F-P-F bending
motion, peak III is the in-plane bending of H-C-N angles in
the imidazolium ring, peak IV is the vibrational motion of
several atoms in the imidazolium ring, and the peaks in region
V are the stretching of C-H bonds. The computed frequency

for peak I occurs at 50 cm-1 less than the experimental value.
The agreement between computed and experimental frequencies
for peaks II-IV is excellent. Peaks II and III occur at 15 cm-1

less than the experimental values, and peak IV occurs at 26
cm-1 less than the experimental value. The computed frequen-
cies above 2800 cm-1 (region V) are overestimated, with errors
larger than 100 cm-1 (see Table 3). The large errors in the
predicted C-H stretching frequencies are likely due to anhar-
monicity effects.23

4.1. Molar Volume. Figure 3 shows the experimental24 and
computed molar volumes as a function of temperature at
atmospheric pressure. Results are also given in Table 4. At all
temperatures, the predicted molar volumes are lower than the
experimental molar volumes by less than 1%. This level of
agreement is excellent considering that the calculations are
purely predictive; none of the force field parameters have been
adjusted to match experimental data. Table 5 gives the
breakdown of the potential energy into electrostatic, van der
Waals, intramolecular, and kinetic energies. The average

Figure 2. Comparison of computed and experimental16 IR spectra for
[bmim][PF6].

TABLE 3: Comparison of Predicted and Experimental IR
Spectral Data

assignment
pred. freq.

(cm-1)
expt.16 freq.

(cm-1)

C2-N1-C5 bend 669.9 622.9
F-P-F bend 827.5 815.8
imidazole H-C-C & H-C-N bend 1179.5 1167.7
imidazole ring bends 1600.9 1574.6
aliphatic C-H str. 3049.2 2939.1
aliphatic C-H str. 3092.9 2966.1
imidazole C-H str. 3294.8 3124.2
imidazole C-H str. 3299.3 3170.5

Figure 3. Comparison of predicted and experimental molar volumes
of [bmim][PF6] at 0.98 bar. Lines are linear fits to the data.
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electrostatic contribution to the potential energy at 298 K is
-256.7 kJ/mol, which is twice as large as the van der Waals
interactions and is 46 kJ/mol larger than the value reported for
[emim][AlCl4].9 The total intramolecular potential energy,
calculated by summing the bond, angle, dihedral, and improper
angle energies, is 89.6 kJ/mol. This suggests that properties are
most sensitive to the electrostatic portion of the force field.

4.2. Volume Expansivity (rP). The volume expansivity
quantifies the extent to which the volume of a fluid changes
with temperature at constant pressure, and is defined as

The volume expansivity can be computed by running a series
of simulations at the same pressure but different temperatures.
Because the change of volume with temperature is approxi-
mately linear,RP can be calculated using eq 2 by fitting a straight
line to the simulated molar volume data. Table 4 lists the volume
expansivities computed using this approach compared with the
experimental results.24 In all cases, the simulations predict
expansivities that are lower than the experimental values by
about 0.6 K-1. It is observed that the predicted expansivities
decrease slightly with increasing temperature, in good agreement
with the experiments.

4.3. Isothermal Compressibility (KT). The isothermal com-
pressibility quantifies the extent to which the volume of a fluid
changes with pressure at constant temperature, and is defined
as

In this work, the isothermal compressibility was calculated using
the following fluctuation formula25

Table 4 lists the computed isothermal compressibilities com-
pared with experimental values.24 The computed isothermal
compressibilities are consistently lower than the experimental
values by 12-33%. There is still reasonably good agreement
with experiment, however, especially considering the well-
known difficulty in computing pressures from an atomistic
simulation, as well as the inherent inaccuracy involved in
computing derivative quantities using a fluctuation formula of
the type in eq 4. The overall good agreement between the
calculated and experimental PVT properties for this fluid

indicates that the force field does a reasonable job of describing
the liquid state of [bmim][PF6]. The force field was therefore
used to compute other thermodynamic, structural, and dynamic
properties for which experimental data do not yet exist.

4.4. Cohesive Energy Density.The cohesive energy density
of a liquid is defined as26

where∆Uvap is the change in internal energy of the liquid upon
isothermal vaporization into the ideal gas state andVL is the
molar volume of the liquid. To calculate the cohesive energy
density, the average internal energy and molar volume of the
liquid were obtained from the liquid simulation, and the average
internal energy of the ideal gas was obtained by simulating a
single [bmim][PF6] ion pair at the same temperature as the liquid
but at zero pressure (i.e., no periodic boundary conditions). The
cohesive energy density of [bmim][PF6] versus temperature is
given in Table 6. At 298 K, the cohesive energy density is 761
J cm-3. In contrast, the cohesive energy densities of the heavy
hydrocarbons hexadecane and naphthalene are 268 and 410 J
cm-3, respectively.27 The extremely high cohesive energy
density of [bmim][PF6] stems mainly from electrostatic interac-
tions, and explains why these liquids have such low volatility.

4.5. Molecular Structure. To obtain a better understanding
of the structure of this ionic liquid, various radial distribution
functions (RDFs org(r)) were computed at each of the
statepoints. The center-of-mass RDFs for cation-cation, cation-
anion, and anion-anion pairs at 298 K and 0.98 bar are shown
in Figure 4. The RDFs at 323 and 343 K are qualitatively very
similar and are not shown here. It is observed that the first
solvation shell for cation-anion pairs forms at about 4.3 Å.
The second and third cation-anion solvation shells occur at
10.6 and 17.6 Å, respectively. Given the long-range Coulombic
interactions in this system, it is not surprising to see that weak
ordering persists beyond 23 Å. The first peak in the cation-
cation RDF occurs at 8 Å, and the anion-anion RDF shows
two peaks at 6.5 and 9 Å. This split peak is the result of
sequential ordering induced by the cation-anion pairs. The
RDFs agree remarkably well with those of Shah et al.,8 who
used a simpler, united atom model for this liquid.

TABLE 4: Comparison of Predicted and Experimental
Molar Volumes, Volume Expansivities, and Isothermal
Compressibilities at 0.98 Bar

V (cm3 mol-1) RP × 104 (K-1) κT × 106 (bar-1)

temp (K) sim exp24 sim exp24 sim exp24

298.2 207.8 208.9 5.49 6.11 36.83 41.95
323.2 210.6 212.1 5.42 6.02 32.86 49.35
343.2 212.9 214.7 5.36 5.95 39.20 N/A

TABLE 5: Comparison of the Contribution of Various
Terms to the System Total Energy

temp
(K)

elect.
(kJ/mol)

LJ
(kJ/mol)

kinetic
(kJ/mol)

intra.
(kJ/mol)

298.2 -256.72 -89.22 100.50 89.56
323.2 -256.21 -87.19 108.92 96.74
343.2 -255.07 -85.51 116.78 102.4

RP ) 1
V(∂V

∂T)P
(2)

κT ) - 1
V(∂V

∂P)T
(3)

κT )
〈δV2〉NPT

〈V〉NPTkT
(4)

TABLE 6: Self-Diffusion Coefficients and Cohesive Energy
Density of [bmim][PF6] versus Temperature

temp
(K)

D[bmim] × 10-12

(m2 s-1)
D[PF6] × 10-12

(m2 s-1)
c

(J cm-3)

298.2 9.70( 4.1 8.82( 4.2 761
323.2 15.4( 5.8 11.1( 5.6 738
343.2 12.1( 7.3 10.6( 7.6 727

Figure 4. Center of mass radial distribution functions of [bmim][PF6]
at 298 K and 0.98 bar.

c ) ∆Uvap

VL
(5)
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Further insight into the liquid structure can be gained by
examining the site-site pair RDFs. RDFs for the phosphorus
atom of the anion and different imidazolium carbon atoms of
the cation are shown in Figure 5. It is observed that the anion
prefers to associate with the C2 carbon of the imidazolium ring.
The C2-H1 atom pair constitutes the largest amount of positive
charge on the cation, so it is not surprising that the anion
interacts more strongly with this part of the cation. In addition,
the locations of the first peaks in the RDFs of Figure 5 are
consistent with the ab initio optimized geometry of the cation-
anion pair shown in Figure 1.

The RDFs suggest that the individual ions in [bmim][PF6]
tend to aggregate into well-defined ion clusters. By integrating
g(r) out to the location of the first minimum, the coordination
number for the first solvation shell,N, can be calculated via
the following equation

whereF is the bulk density andrshell is the first minimum in
g(r). Using rshell equal to 8.36 Å, the calculated coordination
number for the cation-anion first solvation shell is 6.8,
indicating that each ion is surrounded by a cage of nearly seven
other counterions. Similarly, the cation-cation coordination
number is 6.2, and the anion-anion coordination number is 6.1.
Therefore, the total coordination number for the first solvation
shell of an ion is nearly 13. Note, however, that the coordination
numbers computed from eq 6 are sensitive to the choice ofrshell.
For example, settingrshell equal to 8.0 Å reduces the cation-
anion, cation-cation, and anion-anion coordination numbers
to 6.2, 5.0, and 4.9, respectively.

4.6. Diffusion. The coefficient of self-diffusion for a fluid
or solid can be calculated using the Einstein relation28

where the quantity in braces is the ensemble-averaged mean
square displacement (MSD) of the molecules andr i is the vector
coordinate of the center of mass of ioni. The mean square
displacements of the cation and anion at 298 K and 0.98 bar
are shown in Figure 6. The MSDs are linear up to roughly 1
ns, after which they show a slightly nonlinear increase up to
about 1.8 ns, followed by a second linear regime. A block
averaging technique25 was used to obtain the MSDs, so the
results are most reliable at short times. For this reason, the self-
diffusion coefficients for the cation and anion were obtained
by fitting the slope of the linear region from 200 to 1000 ps to
a straight line and applying eq 7. Results are given in Table 6.

At 298 K and 0.98 bar, the predicted self-diffusion coefficients
of the cation and anion are 9.70× 10-12 and 8.82× 10-12 m2

s-1, respectively. For comparison, the self-diffusion coefficient
of water29 at 298 K and 1 atm is 2.3× 10-9 m2 s-1. This result
is consistent with the fact that [bmim][PF6] has a much higher
viscosity (450 cP)30 than water. If one assumes that the Stokes-
Einstein relation can be applied to this system, then the self-
diffusion coefficients for the ionic liquid can be estimated from
the relation

whereDIL ) 1/2(D[bmim] + D[PF6]) andη is the viscosity. Using
eq 8 andηH2O ) 0.9 cP,31 the estimated self-diffusion coefficient
for the ionic liquid is 4.6× 10-12 m2 s-1, which is fairly close
to the computed value, especially considering the simplifying
assumptions behind the Stokes-Einstein relation. The computed
self-diffusion coefficients for [bmim] and [PF6] are roughly 10
times smaller than those reported by de Andrade et al.,9 who
computed self-diffusivities for 1-ethyl-3-methylimidazolim
([emim]) and [AlCl4] ions and are also 10 times smaller than
the experimental result for [emim].32 This is not surprising
because the [emim] and [AlCl4] ions are smaller than the ions
in this study and because the reported intermolecular potential
energy9 for [emim][AlCl4] is not as great as it is in this system.
The computed self-diffusion coefficient for [PF6] is also seven
times lower than that calculated by Hanke et al.6 from a
simulation of dimethylimidazolium ([dmim]) [PF6] at 400 K.
Much of this difference could be due to the fact that the
simulations of Hanke et al.6 were at higher temperatures than
the present work and because [dmim] is a smaller cation than
[bmim]. We also note that the simulations in both ref 6 and 9
were over a much shorter time scale (100 ps) compared to the
relatively long simulation times of this work.

The self-diffusion coefficients for [bmim] and [PF6] could
not be determined reliably by fitting the mean square displace-
ment data at times longer than 1 ns. This was due to inaccuracies
in the data caused by insufficient sampling. These inaccuracies
were apparent in the relatively large (but not systematic)
anisotropy in the diagonal terms of the self-diffusivity tensor
at times greater than 1 ns. Long-time anisotropy in a homoge-
neous system indicates that even longer simulations than those
in this work are needed to accurately determine MSDs above 1
ns. One must therefore leave open the possibility that the actual
self-diffusivity, which by definition is a long-time quantity, may
differ from that which is computed over these relatively short
time scales. Nevertheless, the values reported here appear to

Figure 5. Atom-atom radial distribution functions for [bmim][PF6]
at 298 K and 0.98 bar.

N ) ∫0

rshell Fg(r)4πr2 dr (6)

DSelf ) 1
6

lim
tf∞

d
dt

〈|r i(t) - r i(0)|〉 (7)

Figure 6. Center of mass mean square displacements of [bmim][PF6]
at 298 K and 0.98 bar.

DIL ) DH2O

ηH2O

ηIL
(8)
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be reasonable estimates of the actual self-diffusivity, on the basis
of the semiquantitative agreement with the results obtained from
the Stokes-Einstein model. The validity of the self-diffusivity
can also be tested through use of the following diffusion model.

Recalling that each ion is surrounded by a cage of other ions,
we hypothesize that ion diffusion involves a two-step process.
In the first step, neighboring ions are displaced enough to disrupt
a cage and form a diffusion pathway. In the second step, an ion
leaves its cage, moving to another neighboring cage site. To
test this hypothesis, the characteristic time for the breaking of
ion cages was determined through use of a cage correlation
function.33 The cage for a given ion is determined by the
neighbor list for that ion, defined as

wheref(rij) is the Heaviside function

and rcut is a cutoff radius for the neighbor list. The cage
correlation function is defined as

whereni
out is the number of ions that have left ioni’s original

neighbor list at timet and H is the Heaviside function. In
computing the neighbor lists for all the ions,rcut was set equal
to the location of the first minimum of the cation/anion radial
distribution function. Figure 7 shows lnCcage(t) for the system
at 298 K. There is a rapid decay ofCcage(t) at short times (t <
0.5 ns), which is attributed to vibrational motion of ions near
the boundary of a cage. After the period of initial rapid decay,
Ccage(t) plateaus and then decays exponentially after about 0.8-
2.0 ns. It is interesting to note that 0.8 ns is about the same
time in which a shift in the slopes of the MSDs is observed in
Figure 6. By fitting an exponential function to the region from
0.8 to 2.0 ns, a time constant of 1.53 ns is obtained for the
decay of the ion cages. This time constant is indicative of the
average time needed for any particular ion to leave another ion’s
neighbor list.

To investigate the rate at which anions exit the ion cages,
Ccage(t) was computed by considering only theanionssurround-
ing a givencation. A plot of ln Ccage(t) at 298 K computed in
this way is qualitatively similar to Figure 7 and is not shown

here. The time constant obtained by fitting the intermediate
region to an exponential is 3.46( 0.04 ns. Likewise, the rate
at which cations exit the ion cages can be studied by computing
ln Ccage(t) by considering only thecationssurrounding a given
anion. The time constant computed for cation departure at 298
K is 3.25 ( 0.03 ns. It is not surprising to see that the time
constant computed from Figure 7 is about half the time constants
for cation and anion departures. This is because whenever a
cation departs from an anion’s neighbor list that cation
simultaneously sees the anion depart from its own neighbor list.
Thus, two cages decay whenever one ion moves out of another
ion’s cage.

The cage correlation results suggest that diffusion in ionic
liquids can be modeled semiquantitatively as an activated
hopping process. Each ion is assumed to reside on a three-
dimensional lattice, with lattice spacings∆ given by the distance
between peaks ing(r). Ions execute a random walk between
sites with a characteristic timeτ, assumed to be equal to the
time constant for cage decomposion. The self-diffusion coef-
ficient for this model is simply34

To compute the self-diffusion coefficient for [bmim] using this
model, we set∆ ) 8 Å andτ ) 3.25 ns. The resultingDself for
[bmim] is 3.28× 10-11 m2 s-1. Using∆ ) 8 Å andτ ) 3.49
ns for [PF6] gives a self-diffusivity of 3.08× 10-11 m2 s-1.
These results are roughly three times higher than the computed
self-diffusivities and a factor of 10 greater than that estimated
from the Stokes-Einstein model. It should be expected that this
simple model over predicts the self-diffusivity, because it does
not account for correlated hoping motion. In the real system, it
is likely that an ion that leaves a cage will frequently return to
its original location, thus decreasing the overall displacement.
The simplified model does not account for this but rather
assumes that ions successfully thermalize in a new cage after
each hop. Nevertheless, this simple model appears to capture
much of the dynamics responsible for diffusion in this system.

4.7. Test of Sampling.Figure 6 shows that at 298 K the
average ion moves only about 2 Å per ns of simulation time.
This sluggish dynamics raises a serious concern over the level
of phase space sampling in the current simulations, as well as
the suitability of molecular dynamics for these calculations. As
a simple test to determine if the simulations were stuck in a
local potential energy minimum, three additional 300 molecule
simulations were conducted for [bmim][PF6] at 298 K. Each
simulation was started from a different initial configuration and
at different initial densities. Figure 8 shows the molar volumes
of each of these simulations versus time. All three independent
simulations converged to the same molar volume as that found
from the original simulation started near the experimental density
within approximately 200 ps. This indicates that, although phase
space sampling is still a concern for this system, it appears that
the present calculations have been run long enough to properly
sample the equilibrium state of the system.

4.8. Other Dynamic Properties.The rotational dynamics
of the anion were investigated by computing the cosine of the
average angleθ between the vector from the P atom to the F1

atom of an anion at time zero and timet. The decorrelation of
this angle with time gives insight into the rotational motion of
the anion. The rotational time constant was obtained by fitting
an exponential function to long-time decay of〈cos θ〉. The

Figure 7. Time dependence of ln [Ccage(t)] for [bmim][PF6] at 298 K
and 0.98 bar.

Dself ) ∆2

6τ
(12)

l i ≡ (f(ri1)
l

f(riN) ) (9)

f(rij) ) H(rcut - rij) ) {1 if rij e rcut

0 otherwise
(10)

Ccage(t) ≡ 〈H(1 - ni
out(0,t))〉 (11)
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computed time constant for anion rotation at 298 K is ap-
proximately 28.8 ps. In a similar manner, the rotational dynamics
of the cation were investigated using a vector normal to the
imidazolium ring. As expected, the rotational time constant is
much longer at approximately 4.3 ns. This huge separation of
time scales is significant; although it appears that the transla-
tional motion of cations and anions is highly correlated and slow,
their rotational motions occur over vastly different time scales.

5. Conclusions

Results of a molecular dynamics simulation of [bmim][PF6]
are reported. An all-atom force field for the ionic liquid is
developed using a combination of ab initio calculations and
CHARMM22 parameters. The agreement between the experi-
mental and computed IR spectra is very good, and the vibrational
motions associated with various peaks in the experimental
spectrum are identified. The agreement between experimental
and computed values of the volume expansivity and isothermal
compressibility are good, and the agreement between molar
volumes is excellent. The force field was not adjusted to match
the experimental data. Discrepancies between the simulation and
experiment may be due to the use of unoptimized potential
parameters or the neglect of polarizability. Liquid structure is
reported in the form of center-of-mass radial distribution
functions for cation-cation, cation-anion, and anion-anion
pairs, as well as site-site RDFs. It is observed that the anion
tends to orient near the C2 carbon of the cation. Self-diffusion
coefficients for [bmim] and [PF6] are computed from the slopes
of the center-of-mass mean-square displacements of the cation
and anion, respectively. The reported self-diffusivities are 2
orders of magnitude smaller than the self-diffusivity of water
at room temperature. The mechanism for diffusion of the ions
is investigated via the computation of cage correlation functions.
A simple random walk diffusion model based on this time
constant yields a self-diffusivity that is in fair agreement with
the calculations, as does the Stokes-Einstein estimate based
on scaling with the viscosity and diffusivity of water. Rotational
dynamics of the cation and anion are investigated via the
computation of a common order parameter. The rotational time
constants are indicative of the very slow rotational dynamics
of the [bmim] cation but the relatively fast rotational motion of
the [PF6] anion.
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